Robust Algebraic Multilevel Preconditioners for Anisotropic Problems

We present an overview on the state of the art of robust AMLI preconditioners for anisotropic elliptic problems. The included theoretical results summarize the convergence analysis of both linear and nonlinear AMLI methods for finite element discretizations by conforming and nonconforming linear elements and by conforming quadratic elements. The initially proposed hierarchical basis approach leads to robust multilevel algorithms for linear but not for quadratic elements for which an alternative AMLI method based on additive Schur complement approximation (ASCA) has been developed by the authors just recently. The presented new numerical results are focused on cases beyond the limitations of the rigorous AMLI theory. They reveal the potential and prospects of the ASCA approach to enhance the robustness of the resulting AMLI methods especially in situations when the matrix-valued coefficient function is not resolved on the coarsest mesh in the multilevel hierarchy.

[1]  Johannes K. Kraus,et al.  An algebraic preconditioning method for M‐matrices: linear versus non‐linear multilevel iteration , 2002, Numer. Linear Algebra Appl..

[2]  Owe Axelsson,et al.  Two Simple Derivations of Universal Bounds for the C.B.S. Inequality Constant , 2004 .

[3]  Svetozar Margenov,et al.  On Multilevel Preconditioners which are Optimal with Respect to Both Problem and Discretization Parameters , 2003 .

[4]  M. Neytcheva On element-by-element Schur complement approximations , 2011 .

[5]  Tony F. Chan,et al.  Detection of Strong Coupling in Algebraic Multigrid Solvers , 2000 .

[6]  W. Greub Linear Algebra , 1981 .

[7]  Svetozar Margenov,et al.  Robust multilevel methods for quadratic finite element anisotropic elliptic problems , 2014, Numer. Linear Algebra Appl..

[8]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[9]  Owe Axelsson,et al.  Preconditioning of Boundary Value Problems Using Elementwise Schur Complements , 2009, SIAM J. Matrix Anal. Appl..

[10]  Yalchin Efendiev,et al.  Robust Two-level Domain Decomposition Preconditioners for High-contrast Anisotropic Flows in Multiscale Media , 2012, Comput. Methods Appl. Math..

[11]  J. Maître,et al.  The contraction number of a class of two-level methods; an exact evaluation for some finite element subspaces and model problems , 1982 .

[12]  Svetozar Margenov,et al.  Robust optimal multilevel preconditioners for non-conforming finite element systems , 2005, Numer. Linear Algebra Appl..

[13]  Johannes K. Kraus,et al.  Algebraic multilevel preconditioning of finite element matrices using local Schur complements , 2006, Numer. Linear Algebra Appl..

[14]  Yvan Notay,et al.  Recursive Krylov‐based multigrid cycles , 2008, Numer. Linear Algebra Appl..

[15]  Panayot S. Vassilevski,et al.  Algebraic Multilevel Preconditioning of Anisotropic Elliptic Problems , 1994, SIAM J. Sci. Comput..

[16]  Johannes Kraus,et al.  Additive Schur Complement Approximation and Application to Multilevel Preconditioning , 2012, SIAM J. Sci. Comput..

[17]  Owe Axelsson,et al.  Variable-step multilevel preconditioning methods, I: Self-adjoint and positive definite elliptic problems , 1994, Numer. Linear Algebra Appl..

[18]  Owe Axelsson,et al.  On the Additive Version of the Algebraic Multilevel Iteration Method for Anisotropic Elliptic Problems , 1999, SIAM J. Sci. Comput..

[19]  Svetozar Margenov,et al.  On the Robustness of Two-Level Preconditioners for Quadratic FE Orthotropic Elliptic Problems , 2011, LSSC.

[20]  P. Vassilevski Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations , 2008 .

[21]  Svetozar Margenov,et al.  On the multilevel preconditioning of Crouzeix-Raviart elliptic problems , 2008, Numer. Linear Algebra Appl..

[22]  Owe Axelsson Stabilization of algebraic multilevel iteration methods; additive methods , 2004, Numerical Algorithms.

[23]  Svetozar Margenov,et al.  Analysis of the CBS Constant for Quadratic Finite Elements , 2010, NMA.

[24]  Maya Neytcheva,et al.  Efficient Preconditioners for Large Scale Binary Cahn-Hilliard Models , 2012, Comput. Methods Appl. Math..

[25]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[26]  Svetozar Margenov,et al.  Uniform estimate of the constant in the strengthened CBS inequality for anisotropic non-conforming FEM systems , 2004, Numer. Linear Algebra Appl..

[27]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .