Photovoltaic Behavior of Junctions

As noted in Chapter 2, a generalized photovoltaic device is composed of three functional elements, namely, an absorber, a junction region or converter, and a collector. A description of the basic physical processes that may occur in the absorber/generator was given in Chapter 2. In this chapter, we focus our attention on the converter/junction region. Our main interest is to gain a clear perception of the physics underlying solar cell operation. Throughout the text, therefore, the emphasis will be on a qualitative discussion of the physical effects, rather than on quantitative derivations. Accordingly, except in specific cases, we shall present only the final equations and refer the reader to the appropriate literature for the rigorous theory.

[1]  A. G. Milnes,et al.  Interface states in abrupt semiconductor heterojunctions , 1964 .

[2]  William Shockley,et al.  The theory of p-n junctions in semiconductors and p-n junction transistors , 1949, Bell Syst. Tech. J..

[3]  M. Wolf,et al.  SERIES RESISTANCE EFFECTS ON SOLAR CELL MEASUREMENTS , 1963 .

[4]  J. Shewchun,et al.  A better approach to the evaluation of the series resistance of solar cells , 1979 .

[5]  P. Rappaport,et al.  Effect of Temperature on Photovoltaic Solar Energy Conversion , 1960 .

[6]  R. V. Overstraeten,et al.  Theoretical investigation of the efficiency of drift-field solar cells , 1969 .

[7]  A. D. Vos Calculation of the maximum attainable efficiency of a single heterojunction solar cell , 1976 .

[8]  A. Rothwarf,et al.  Thin-film solar cells: A unified analysis of their potential , 1980, IEEE Transactions on Electron Devices.

[9]  A. Milnes,et al.  Heterojunction solar cell calculations , 1970 .

[10]  R. Kumar,et al.  Current transport in isotype heterojunctions , 1968 .

[11]  H. Pauwels Analysis and evaluation of isotype heterojunction solar cells , 1979 .

[12]  N. G. Tarr,et al.  An investigation of dark current and photocurrent superposition in photovoltaic devices , 1979 .

[13]  D. Feucht Heterojunctions in photovoltaic devices , 1977 .

[14]  R. Rediker,et al.  Interface-alloy epitaxial heterojunctions , 1964 .

[15]  R.L. Anderson Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[16]  W. R. Runyan,et al.  Influence of mobility and lifetime variations on drift-field effects in silicon-junction devices , 1967 .

[17]  L. Kazmerski,et al.  The effects of grain boundaries on the performance of thin film photovoltaic devices , 1979 .

[18]  Martin A. Green,et al.  Review of conductor-insulator-semiconductor (CIS) solar cells , 1981 .

[19]  S. Fonash Band structure and photocurrent collection in crystalline and polycrystalline p-n heterojunction solar cells , 1979 .

[20]  R. L. Anderson,et al.  Germanium-gallium arsenide heterojunctions , 1960 .

[21]  G. Marowsky Astigmatism and coma‐free prism dye ring laser , 1975 .

[22]  O. Roos A simple theory of back‐surface‐field (BSF) solar cells , 1978 .

[23]  H. K. Charles,et al.  Evaporated polycrystalline silicon films for photovoltaic applications - grain size effects , 1978 .

[24]  C. E. Norman,et al.  Detailed modeling of inversion-layer solar cells , 1980, IEEE Transactions on Electron Devices.

[25]  A. Rothwarf,et al.  Materials for Solar Photovoltaic Energy Conversion , 1976 .

[26]  F. D. King,et al.  Minority carrier MIS tunnel diodes and their application to electron- and photo-voltaic energy conversion—I. Theory☆ , 1974 .

[27]  The short‐wavelength response of MIS solar cells , 1979 .

[28]  J. Lindmayer,et al.  Electronic processes in CuxSCdS photovoltaic cells , 1971 .

[29]  E. L. Burgess,et al.  Application of the superposition principle to solar-cell analysis , 1979, IEEE Transactions on Electron Devices.

[30]  M. Green,et al.  High-efficiency silicon minMIS solar cells—Design and experimental results , 1980, IEEE Transactions on Electron Devices.

[31]  C. R. Crowell,et al.  Current transport in metal-semiconductor barriers , 1966 .

[32]  S. Kaye,et al.  Optimum bulk drift-field thicknesses in solar cells , 1966 .

[33]  K. W. Böer,et al.  Direct conversion of solar energy through photovoltaic cells , 1975 .

[34]  D. Redfield,et al.  Multiple‐pass thin‐film silicon solar cell , 1974 .

[35]  H. Pauwels,et al.  The influence of interface state and energy barriers on the efficiency of heterojunction solar cells , 1978 .

[36]  John Shewchun,et al.  The operation of the semiconductor‐insulator‐semiconductor (SIS) solar cell: Theory , 1978 .

[37]  T. Moss,et al.  Calculated efficiencies of practical GaAs and Si solar cells including the effect of built-in electric fields , 1968 .

[38]  G. Mey,et al.  Influence of junction roughness on solar-cell characteristics , 1977 .

[39]  H. Hovel,et al.  Outlooks for GaAs terrestrial photovoltaics , 1975 .

[40]  F. A. Shirland The history, design, fabrication and performance of CdS thin film solar cells , 1966 .

[41]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[42]  L. Fraas Basic grain‐boundary effects in polycrystalline heterostructure solar cells , 1978 .

[43]  A. Neugroschel,et al.  Experimental determination of series resistance of p-n junction diodes and solar cells , 1978, IEEE Transactions on Electron Devices.

[44]  M. J. Adams,et al.  A proposal for a new approach to heterojunction theory , 1979 .

[45]  E. Bucher Solar cell materials and their basic parameters , 1978 .

[46]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[47]  L. V. Ruyven,et al.  Optical phenomena in GeGaP heterojunctions , 1965 .

[48]  J. Loferski,et al.  Theoretical Considerations Governing the Choice of the Optimum Semiconductor for Photovoltaic Solar Energy Conversion , 1956 .

[49]  W. Oldham,et al.  n-n Semiconductor heterojunctions , 1963 .

[50]  Parry Moon,et al.  Proposed standard solar-radiation curves for engineering use , 1940 .

[51]  Robert J. Tennant Photovoltaic Power Generation , 1978 .

[52]  M. Wolf,et al.  Limitations and Possibilities for Improvement of Photovoltaic Solar Energy Converters: Part I: Considerations for Earth's Surface Operation , 1960, Proceedings of the IRE.

[53]  K. Rajkanan,et al.  Absorption coefficient of silicon for solar cell calculations , 1979 .

[54]  M. Prince Silicon Solar Energy Converters , 1955 .

[55]  A. Fahrenbruch,et al.  Photovoltaic energy conversion with n-CdS—p-CdTe heterojunctions and other II-VI junctions , 1977, IEEE Transactions on Electron Devices.

[56]  A. G. Milnes,et al.  Heterojunctions and Metal Semiconductor Junctions , 1972 .

[57]  S. S. Perlman,et al.  p-n heterojunctions , 1964 .

[58]  E. Yang,et al.  Electronic processes at grain boundaries in polycrystalline semiconductors under optical illumination , 1977, IEEE Transactions on Electron Devices.

[59]  J. Shewchun,et al.  Photovoltaic effect in MIS diodes or Schottky diodes with an interfacial layer , 1976 .

[60]  A. R. Riben,et al.  Electrical Transport in nGe-pGaAs Heterojunctions† , 1966 .

[61]  William Shockley,et al.  Electrons and Holes in Semiconductors , 1952 .

[63]  L. Kazmerski The effects of grain boundary and interface recombination on the performance of thin-film solar cells , 1978 .

[64]  M. Wolf,et al.  Drift fields in photovoltaic solar energy converter cells , 1963 .

[65]  H. Hovel,et al.  Ga/sub 1-x/Al/sub x//As--GaAs p-p-n heterojunction solar cells , 1973 .

[66]  P. Newman Forward characteristics of heterojunctions , 1965 .

[67]  W. Harrison Elementary theory of heterojunctions , 1977 .

[68]  H. Kanerva,et al.  Current-voltage characteristics and capacitance of isotype heterojunctions , 1967 .

[69]  H. Hovel,et al.  Efficiency calculations for thin-film polycrystalline semiconductor Schottky barrier solar cells , 1977, IEEE Transactions on Electron Devices.

[70]  A. Flat,et al.  Predicted effect of grid line aspect ration on the performance of solar cells , 1980 .

[71]  J. Shewchun,et al.  Theory of metal‐insulator‐semiconductor solar cells , 1977 .