The rutile TiO2 (110) surface: obtaining converged structural properties from first-principles calculations.

We investigate the effects of constraining the motion of atoms in finite slabs used to simulate the rutile TiO2 (110) surface in first-principles calculations. We show that an appropriate choice of fixing atoms in a slab eliminates spurious effects due to the finite size of the slabs, leading to a considerable improvement in the simulation of the (110) surface. The method thus allows for a systematic improvement in convergence in calculating both geometrical and electronic properties. The advantages of this approach are illustrated by presenting the first theoretical results on the displacement of the surface atoms in agreement with experiment.

[1]  V. Henrich The nature of transition-metal-oxide surfaces , 1983 .

[2]  Geoff Thornton,et al.  Revisiting the surface structure of TiO2(110): A quantitative low-energy electron diffraction study , 2005 .

[3]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[4]  Horia Metiu,et al.  Adsorption of gold on stoichiometric and reduced rutile TiO2 (110) surfaces , 2003 .

[5]  Georg Kresse,et al.  A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations , 1997 .

[6]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[7]  M. Gillan,et al.  FIRST-PRINCIPLES SPIN-POLARIZED CALCULATIONS ON THE REDUCED AND RECONSTRUCTED TIO2 (110) SURFACE , 1997 .

[8]  Freeman,et al.  Electronic structure and relaxed geometry of the TiO2 rutile (110) surface. , 1994, Physical review. B, Condensed matter.

[9]  Matthias Scheffler,et al.  The influence of soft vibrational modes on our understanding of oxide surface structure , 1999 .

[10]  R. Armstrong,et al.  Ion scattering measurements of rutile TiO2(110)-(1 × 1) surface relaxation , 1997 .

[11]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[12]  Hess,et al.  Electronic and geometrical structure of rutile surfaces. , 1994, Physical Review B (Condensed Matter).

[13]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[14]  M. Lazzeri,et al.  Oxygen vacancy mediated adsorption and reactions of molecular oxygen on theTiO2(110)surface , 2003 .

[15]  J. Sanz,et al.  Oxygen vacancies on TiO2 (110) from first principles calculations. , 2004, The Journal of chemical physics.

[16]  D. Norman,et al.  RELAXATION OF TIO2(110)-(1 X 1) USING SURFACE X-RAY DIFFRACTION , 1997 .

[17]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[18]  M. Springborg Density-functional methods in chemistry and materials science , 1997 .

[19]  Julian D. Gale,et al.  Simulation of low index rutile surfaces with a transferable variable-charge Ti–O interatomic potential and comparison with ab initio results , 2002 .

[20]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[21]  Thomas Bredow,et al.  Electronic properties of rutile Ti O 2 ultrathin films: Odd-even oscillations with the number of layers , 2004 .

[22]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .