Detecting Malware-Infected Devices Using the HTTP Header Patterns

[1]  Sung-Ju Lee,et al.  Detecting malicious activities with user-agent-based profiles , 2015, Int. J. Netw. Manag..

[2]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[3]  Arvind Krishnamurthy,et al.  Studying Spamming Botnets Using Botlab , 2009, NSDI.

[4]  Roberto Perdisci,et al.  ExecScent: Mining for New C&C Domains in Live Networks with Adaptive Control Protocol Templates , 2013, USENIX Security Symposium.

[5]  Apostolis Zarras,et al.  Automated generation of models for fast and precise detection of HTTP-based malware , 2014, 2014 Twelfth Annual International Conference on Privacy, Security and Trust.

[6]  Akio Watanabe,et al.  Spatio-temporal factorization of log data for understanding network events , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[7]  Mitsuaki Akiyama,et al.  Design and Implementation of High Interaction Client Honeypot for Drive-by-Download Attacks , 2010, IEICE Trans. Commun..

[8]  Pierre Baldi,et al.  Understanding Dropout , 2013, NIPS.

[9]  Christopher Krügel,et al.  BareCloud: Bare-metal Analysis-based Evasive Malware Detection , 2014, USENIX Security Symposium.

[10]  Geoff Hulten,et al.  Spamming botnets: signatures and characteristics , 2008, SIGCOMM '08.

[11]  Mitsuaki Akiyama,et al.  BotProfiler: Profiling Variability of Substrings in HTTP Requests to Detect Malware-Infected Hosts , 2015, 2015 IEEE Trustcom/BigDataSE/ISPA.

[12]  Nick Feamster,et al.  Behavioral Clustering of HTTP-Based Malware and Signature Generation Using Malicious Network Traces , 2010, NSDI.

[13]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[14]  Shigeki Goto,et al.  BotDetector: A robust and scalable approach toward detecting malware-infected devices , 2017, 2017 IEEE International Conference on Communications (ICC).

[15]  Martin Rehák,et al.  Malware detection using HTTP user-agent discrepancy identification , 2014, 2014 IEEE International Workshop on Information Forensics and Security (WIFS).