Estimating the covariance of random matrices
暂无分享,去创建一个
[1] A. Lewis. The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .
[2] Alexander E. Litvak,et al. Tail estimates for norms of sums of log‐concave random vectors , 2011, 1107.4070.
[3] D. Spielman,et al. Spectral sparsification and restricted invertibility , 2010 .
[4] H. Rosenthal. On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .
[5] Alexander E. Litvak,et al. Moment estimates for convex measures , 2012 .
[6] Rudolf Ahlswede,et al. Addendum to "Strong converse for identification via quantum channels" , 2003, IEEE Trans. Inf. Theory.
[7] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[8] R. Adamczak,et al. Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.
[9] Nikhil Srivastava,et al. Twice-ramanujan sparsifiers , 2008, STOC '09.
[10] Guillaume Aubrun. Sampling convex bodies: a random matrix approach , 2007 .
[11] M. Rudelson. Random Vectors in the Isotropic Position , 1996, math/9608208.
[12] Cristiane M. Sato,et al. Sparse Sums of Positive Semidefinite Matrices , 2011, TALG.
[13] R. Oliveira. Sums of random Hermitian matrices and an inequality by Rudelson , 2010, 1004.3821.
[14] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[15] Spherical thin-shell concentration for convex measures , 2013 .
[16] G. Paouris. Concentration of mass on convex bodies , 2006 .
[17] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[18] G. Paouris. Small ball probability estimates for log-concave measures , 2012 .
[19] Michael I. Jordan,et al. Matrix concentration inequalities via the method of exchangeable pairs , 2012, 1201.6002.
[20] Thin-shell concentration for convex measures , 2013, 1306.6794.
[21] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[22] R. Adamczak,et al. Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.
[23] R. Vershynin,et al. Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.
[24] Djalil Chafaï,et al. Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .
[25] O. Guédon,et al. Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.