Estimating the covariance of random matrices

We extend to the matrix setting a recent result of Srivastava-Vershynin about estimating the covariance matrix of a random vector. The result can be interpreted as a quantified version of the law of large numbers for  positive semi-definite matrices which verify some regularity assumption. Beside giving examples, we discuss the notion of log-concave matrices and give estimates on the smallest and largest eigenvalues of a sum of such matrices.

[1]  A. Lewis The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .

[2]  Alexander E. Litvak,et al.  Tail estimates for norms of sums of log‐concave random vectors , 2011, 1107.4070.

[3]  D. Spielman,et al.  Spectral sparsification and restricted invertibility , 2010 .

[4]  H. Rosenthal On the subspaces ofLp(p>2) spanned by sequences of independent random variables , 1970 .

[5]  Alexander E. Litvak,et al.  Moment estimates for convex measures , 2012 .

[6]  Rudolf Ahlswede,et al.  Addendum to "Strong converse for identification via quantum channels" , 2003, IEEE Trans. Inf. Theory.

[7]  Miklós Simonovits,et al.  Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.

[8]  R. Adamczak,et al.  Sharp bounds on the rate of convergence of the empirical covariance matrix , 2010, 1012.0294.

[9]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[10]  Guillaume Aubrun Sampling convex bodies: a random matrix approach , 2007 .

[11]  M. Rudelson Random Vectors in the Isotropic Position , 1996, math/9608208.

[12]  Cristiane M. Sato,et al.  Sparse Sums of Positive Semidefinite Matrices , 2011, TALG.

[13]  R. Oliveira Sums of random Hermitian matrices and an inequality by Rudelson , 2010, 1004.3821.

[14]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[15]  Spherical thin-shell concentration for convex measures , 2013 .

[16]  G. Paouris Concentration of mass on convex bodies , 2006 .

[17]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[18]  G. Paouris Small ball probability estimates for log-concave measures , 2012 .

[19]  Michael I. Jordan,et al.  Matrix concentration inequalities via the method of exchangeable pairs , 2012, 1201.6002.

[20]  Thin-shell concentration for convex measures , 2013, 1306.6794.

[21]  M. Simonovits,et al.  Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .

[22]  R. Adamczak,et al.  Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles , 2009, 0903.2323.

[23]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.

[24]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[25]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.