Admissible wavelets and inverse radon transofrm associated with the affine homogeneous Siegel domains of type II

Let D(Ω,Φ) be the affine homogeneous Siegel domain of type II, whose Silov boundary N is a nilpotent Lie group of step two. In this article, we develop the theory of wavelet analysis on N . By selecting a set of mutual orthogonal wavelets we give a direct sum decomposition of L2(D(Ω,Φ)), the first component A0,0 of which is the Bergman space. Moreover, we study the Radon transform on N , and obtain an inversion formula R−1 = (π)−2dLRL which is an extension of that by Strichartz [R. S. Strichartz, L harmonic analysis and Radon transforms on the Heisenberg group, J. Funct. Anal. 96 (1991), 350–406.]. We devise a subspace of L2(N) on which the Radon transform is a bijection. Using wavelet inverse transform, we establish an inversion formula of the Radon transform in the weak sense.

[1]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[2]  Rob A. Zuidwijk,et al.  Directional and Time-Scale Wavelet Analysis , 1999, SIAM J. Math. Anal..

[3]  Qingtang Jiang Wavelet transform and orthogonal decomposition of space ² on the Cartan domain (=2) , 1997 .

[4]  Khalifa Trimèche,et al.  Inversion of the Radon Transform on the Laguerre Hypergroup by using Generalized Wavelets , 1997 .

[5]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[6]  WAVELET TRANSFORM AND ORTHOGONAL DECOMPOSITION OF L SPACE ON THE CARTAN DOMAIN BDI(q = 2) , 1997 .

[7]  S. Gindikin ANALYSIS IN HOMOGENEOUS DOMAINS , 1964 .

[8]  James B. Seaborn,et al.  Hypergeometric Functions and Their Applications , 1991 .

[9]  金行 壮二 Homogeneous bounded domains and Siegel domains , 1971 .

[10]  Admissible wavelets associated with the classical domain of type one , 1998 .

[11]  Robert S. Strichartz,et al.  Lp harmonic analysis and Radon transforms on the Heisenberg group , 1991 .

[12]  Matthias Holschneider,et al.  Inverse Radon transforms through inverse wavelet transforms , 1991 .

[13]  David Bernier,et al.  Wavelets from square-integrable representations , 1996 .

[14]  Jianxun He,et al.  Admissible Wavelets Associated with the Affine Automorphism Group of the Siegel Upper Half-Plane , 1997 .

[15]  S. Murakami On Automorphisms of Siegel Domains , 1972 .

[16]  S. Helgason The Radon Transform , 1980 .

[17]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[18]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[19]  Calvin C. Moore,et al.  On the regular representation of a nonunimodular locally compact group , 1976 .

[20]  Heping Liu Wavelet Transforms and Symmetric Tube Domains , 1998 .

[21]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[22]  S. Vági,et al.  Harmonic analysis of a nilpotent group and function theory on siegel domains of type II , 1979 .

[23]  Lizhong Peng,et al.  Admissible wavelets associated with the Heisenberg group , 1997 .

[24]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[25]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[26]  Jianxun He,et al.  INVERSION OF THE RADON TRANSFORM ASSOCIATED WITH THE CLASSICAL DOMAIN OF TYPE ONE , 2005 .