A class of modified FR conjugate gradient method and applications to non-negative matrix factorization
暂无分享,去创建一个
[1] L. Chambers. Practical methods of optimization (2nd edn) , by R. Fletcher. Pp. 436. £34.95. 2000. ISBN 0 471 49463 1 (Wiley). , 2001, The Mathematical Gazette.
[2] H. Sebastian Seung,et al. Learning the parts of objects by non-negative matrix factorization , 1999, Nature.
[3] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[4] Yunde Jia,et al. Non-negative matrix factorization framework for face recognition , 2005, Int. J. Pattern Recognit. Artif. Intell..
[5] Hongwei Liu,et al. Modified subspace Barzilai-Borwein gradient method for non-negative matrix factorization , 2013, Comput. Optim. Appl..
[6] P. Paatero,et al. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .
[7] Liu Guanghui,et al. Global convergence of the fletcher-reeves algorithm with inexact linesearch , 1995 .
[8] M. Al-Baali. Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .
[9] Boris Polyak. The conjugate gradient method in extremal problems , 1969 .
[10] Chih-Jen Lin,et al. Projected Gradient Methods for Nonnegative Matrix Factorization , 2007, Neural Computation.
[11] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[12] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[13] Li Zhang,et al. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.