Flagellar assembly in two hundred and fifty easy-to-follow steps.

The eukaryotic flagellum is a complex biochemical machine that moves cells or moves materials over the surface of cells, such as in the mammalian esophagus, oviduct or in protozoa. It is composed of over 250 polypeptides that must be assembled into a number of different structures and each structure must be attached with an exact periodicity along the microtubules. Once the flagellum is assembled, each of the components must act in concert and in three dimensions to produce a complex waveform. This review provides an outline of the composition and function of the different structures found in the flagella of Chlamydomonas.

[1]  S. Dutcher,et al.  Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms , 1992, The Journal of cell biology.

[2]  D. Mastronarde,et al.  Arrangement of inner dynein arms in wild-type and mutant flagella of Chlamydomonas , 1992, The Journal of cell biology.

[3]  John L. Hall,et al.  The Chlamydomonas FLA10 gene encodes a novel kinesin-homologous protein , 1994, The Journal of cell biology.

[4]  B. Taillon,et al.  Mutational analysis of centrin: an EF-hand protein associated with three distinct contractile fibers in the basal body apparatus of Chlamydomonas , 1992, The Journal of cell biology.

[5]  J. Rosenbaum,et al.  Molecular cloning and expression of flagellar radial spoke and dynein genes of Chlamydomonas , 1986, The Journal of cell biology.

[6]  G. Witman,et al.  Localization of an intermediate chain of outer arm dynein by immunoelectron microscopy. , 1990, The Journal of biological chemistry.

[7]  S. Dutcher,et al.  Flagella in prokaryotes and lower eukaryotes. , 1992, Current opinion in genetics & development.

[8]  J. Rosenbaum,et al.  Assembly of flagellar radial spoke proteins in Chlamydomonas: identification of the axoneme binding domain of radial spoke protein 3 , 1993, The Journal of cell biology.

[9]  W. Sale,et al.  Kinesin-related proteins in eukaryotic flagella. , 1994, Journal of cell science.

[10]  G. Pazour,et al.  The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly , 1995, The Journal of cell biology.

[11]  D. Mitchell,et al.  Identification of oda6 as a Chlamydomonas dynein mutant by rescue with the wild-type gene , 1991, The Journal of cell biology.

[12]  D. L. Ringo,et al.  FLAGELLAR ELONGATION AND SHORTENING IN CHLAMYDOMONAS : The Use of Cycloheximide and Colchicine to Study the Synthesis and Assembly of Flagellar Proteins , 1969 .

[13]  J. M. Miller,et al.  Ciliary microtubule capping structures contain a mammalian kinetochore antigen , 1990, The Journal of cell biology.

[14]  C. Wilkerson,et al.  The Mr 78,000 intermediate chain of Chlamydomonas outer arm dynein interacts with alpha-tubulin in situ. , 1991, The Journal of biological chemistry.

[15]  G. Piperno,et al.  Mutations in the "dynein regulatory complex" alter the ATP-insensitive binding sites for inner arm dyneins in Chlamydomonas axonemes , 1994, The Journal of cell biology.

[16]  S. Dutcher,et al.  Mutations in the SUP-PF-1 locus of Chlamydomonas reinhardtii identify a regulatory domain in the beta-dynein heavy chain , 1994, The Journal of cell biology.

[17]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant with a truncated beta heavy chain , 1993, The Journal of cell biology.

[18]  P. Beech,et al.  A new kinesin-like protein (Klp1) localized to a single microtubule of the Chlamydomonas flagellum , 1994, The Journal of cell biology.

[19]  R. Kamiya,et al.  Functional reconstitution of Chlamydomonas outer dynein arms from alpha- beta and gamma subunits: requirement of a third factor , 1994, The Journal of cell biology.

[20]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[21]  D. Luck,et al.  Suppressor mutations in chlamydomonas reveal a regulatory mechanism for flagellar function , 1982, Cell.

[22]  S. Dutcher,et al.  Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii , 1984, The Journal of cell biology.

[23]  J. Rosenbaum,et al.  Localization of a kinesin-related protein to the central pair apparatus of the Chlamydomonas reinhardtii flagellum. , 1994, Journal of cell science.

[24]  P. Lefebvre,et al.  A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. , 1993, Journal of cell science.

[25]  J. Rosenbaum,et al.  Molecular cloning and sequence analysis of the Chlamydomonas gene coding for radial spoke protein 3: flagellar mutation pf-14 is an ochre allele , 1989, The Journal of cell biology.

[26]  J. Rosenbaum,et al.  Polarity of flagellar assembly in Chlamydomonas , 1992, The Journal of cell biology.

[27]  G. Piperno,et al.  ida4-1, ida4-2, and ida4-3 are intron splicing mutations affecting the locus encoding p28, a light chain of Chlamydomonas axonemal inner dynein arms. , 1995, Molecular biology of the cell.

[28]  B. Huang,et al.  Missense mutations at lysine 350 in beta 2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. , 1990, The Plant cell.

[29]  S. Dutcher,et al.  Genetic interactions at the FLA10 locus: suppressors and synthetic phenotypes that affect the cell cycle and flagellar function in Chlamydomonas reinhardtii. , 1991, Genetics.

[30]  J. Rosenbaum,et al.  A motile Chlamydomonas flagellar mutant that lacks outer dynein arms , 1985, The Journal of cell biology.

[31]  H. Sakakibara,et al.  A Chlamydomonas outer arm dynein mutant missing the alpha heavy chain , 1991, The Journal of cell biology.

[32]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[33]  R. Kamiya Mutations at twelve independent loci result in absence of outer dynein arms in Chylamydomonas reinhardtii , 1988, The Journal of cell biology.

[34]  E. O'Toole,et al.  The bop2-1 mutation reveals radial asymmetry in the inner dynein arm region of Chlamydomonas reinhardtii , 1994, The Journal of cell biology.

[35]  G. Piperno,et al.  The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. , 1995, Molecular biology of the cell.

[36]  U. Goodenough,et al.  Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii , 1987, The Journal of cell biology.

[37]  R. Kamiya,et al.  Translocation and rotation of microtubules caused by multiple species of Chlamydomonas inner-arm dynein , 1992 .

[38]  C. Kung,et al.  The pair of central tubules rotates during ciliary beat in Paramecium , 1979, Nature.

[39]  E. O'Toole,et al.  Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella , 1994, The Journal of cell biology.

[40]  C. Wilkerson,et al.  Molecular analysis of the gamma heavy chain of Chlamydomonas flagellar outer-arm dynein. , 1994, Journal of cell science.

[41]  E. Kurimoto,et al.  Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein , 1991, The Journal of cell biology.

[42]  D. Mitchell,et al.  Sequence analysis of the Chlamydomonas alpha and beta dynein heavy chain genes. , 1994, Journal of cell science.

[43]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[44]  R. Kamiya,et al.  Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. , 1993, Cell structure and function.

[45]  J. Rosenbaum,et al.  Flagellar radial spoke: a model molecular genetic system for studying organelle assembly. , 1993, Cell motility and the cytoskeleton.

[46]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: polypeptide composition and phosphorylation of stalk components , 1981, The Journal of cell biology.

[47]  G. Piperno,et al.  Radial spokes of Chlamydomonas flagella: genetic analysis of assembly and function , 1981, The Journal of cell biology.

[48]  W. Sale,et al.  Structural and functional reconstitution of inner dynein arms in Chlamydomonas flagellar axonemes , 1992, The Journal of cell biology.

[49]  J. Rosenbaum,et al.  Sequence analysis reveals homology between two proteins of the flagellar radial spoke , 1992, Molecular and cellular biology.

[50]  G. Piperno,et al.  Analysis of Mutants One-or Two-dimensional Electrophoresis of Polypeptides Antiserum-agarose Overlay on Polyacrylamide Gels Description of the Mutant Strains , 2022 .

[51]  P. Lefebvre,et al.  Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. , 1993, Genetics.