Small is beautiful: features of the smallest insects and limits to miniaturization.

Miniaturization leads to considerable reorganization of structures in insects, affecting almost all organs and tissues. In the smallest insects, comparable in size to unicellular organisms, modifications arise not only at the level of organs, but also at the cellular level. Miniaturization is accompanied by allometric changes in many organ systems. The consequences of miniaturization displayed by different insect taxa include both common and unique changes. Because the smallest insects are among the smallest metazoans and have the most complex organization among organisms of the same size, their peculiar structural features and the factors that limit their miniaturization are of considerable theoretical interest to general biology.

[1]  Giant and dwarf axons in a miniature insect, Encarsia formosa, (Hymenoptera, Calcididae). , 2012, Arthropod structure & development.

[2]  Wulfila Gronenberg,et al.  Brain Allometry and Neural Plasticity in the Bumblebee Bombus occidentalis , 2010, Brain, Behavior and Evolution.

[3]  V. Novotný,et al.  Why are there no small species among xylem-sucking insects? , 1997, Evolutionary Ecology.

[4]  S. Laughlin,et al.  Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.

[5]  W. Wcislo,et al.  Grade Changes in Brain–Body Allometry: Morphological and Behavioural Correlates of Brain Size in Miniature Spiders, Insects and Other Invertebrates , 2011 .

[6]  T. Gregory,et al.  Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma , 2001, Biological reviews of the Cambridge Philosophical Society.

[7]  D. Borror,et al.  An introduction to the study of insects , 1954 .

[8]  R. Snodgrass The morphology of insect sense organs and the sensory nervous system , 1926 .

[9]  Jean-Sébastien Pierre,et al.  Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid , 2005, Behavioral Ecology and Sociobiology.

[10]  E. García‐Barros,et al.  Taxonomic patterns in the egg to body size allometry of butter- flies and skippers (Papilionoidea & Hesperiidae) , 2002 .

[11]  R. Beutel,et al.  Morphology of the minute larva of Ptinella tenella, with special reference to effects of miniaturisation and the systematic position of Ptiliidae (Coleoptera: Staphylinoidea). , 2002, Arthropod structure & development.

[12]  Eric J. Warrant,et al.  Absorption of white light in photoreceptors , 1998, Vision Research.

[13]  I. Meinertzhagen The organisation of invertebrate brains: cells, synapses and circuits , 2010 .

[14]  R. G. Beutel,et al.  Larval head morphology of Hydroscapha natans (Coleoptera, Myxophaga) with reference to miniaturization and the systematic position of Hydroscaphidae , 1998, Zoomorphology.

[15]  B. Leander,et al.  Masters of miniaturization: Convergent evolution among interstitial eukaryotes , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  D. J. Jackson Observations on the biology of Caraphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae (Coleoptera). 2. Immature stages and seasonal history with a review of Mymarid larvae , 1961, Parasitology.

[17]  Eric J. Warrant,et al.  Arthropod eye design and the physical limits to spatial resolving power , 1993, Progress in Neurobiology.

[18]  A. Polilov Thoracic musculature of Sericoderus lateralis (Coleoptera, Corylophidae): Miniaturization effects and flight muscle degeneration related to development of reproductive system , 2011, Entomological Review.

[19]  R. Beutel,et al.  Miniaturisation effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. , 2009, Arthropod structure & development.

[20]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[21]  A. Polilov,et al.  Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae) , 2013, Entomological Review.

[22]  Rüdiger Wehner,et al.  On Being Small: Brain Allometry in Ants , 2006, Brain, Behavior and Evolution.

[23]  A. Polilov,et al.  Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 2. The smallest Hymenoptera (Mymaridae, Trichogrammatidae) , 2013, Entomological Review.

[24]  Linda K. Dybas,et al.  Ultrastructure of mature spermatozoa of a minute featherwing beetle from Sri Lanka (Coleoptera, Ptiliidae: Bambara) , 1987, Journal of morphology.

[25]  P. Timberlake Description of new chalcid-flies from Hawaii and Mexico (Hymenoptera). , 1924 .

[26]  R. Beutel,et al.  Developmental stages of the hooded beetle Sericoderus lateralis (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of miniaturization. , 2010, Arthropod structure & development.

[27]  L. Hemerik,et al.  Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp , 2006, Journal of Insect Behavior.

[28]  B. J. Cole Size and behavior in ants: Constraints on complexity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Niven,et al.  The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. , 2011, Arthropod structure & development.

[30]  E. García‐Barros Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). , 2000 .

[31]  Hans-Wilhelm Pohl Die Primärlarven der Fächerflügler - evolutionäre Trends (Insecta, Strepsiptera) , 1998 .

[32]  Edward L. Mockford,et al.  A New Species of Dicopomorpha (Hymenoptera: Mymaridae) with Diminutive, Apterous Males , 1997 .

[33]  R. Beutel,et al.  Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera). , 2010, Arthropod structure & development.

[34]  M. Seid,et al.  The Allometry of Brain Miniaturization in Ants , 2011, Brain, Behavior and Evolution.

[35]  Gérard Delvare Sur les Megaphragma de Guadeloupe avec la description d'une espèce nouvelle (Hymenoptera, Trichogrammatidae) , 1993 .

[36]  S. Laughlin,et al.  Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring , 2005, Current Biology.

[37]  William G. Eberhard,et al.  Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders , 2011, Animal Behaviour.

[38]  R. Beutel,et al.  Strepsipteran brains and effects of miniaturization (Insecta) , 2005 .

[39]  J. Niven,et al.  Are Bigger Brains Better? , 2009, Current Biology.

[40]  L. Chittka,et al.  Breaking Haller's Rule: Brain-Body Size Isometry in a Minute Parasitic Wasp , 2013, Brain, Behavior and Evolution.

[41]  B. Rensch HISTOLOGICAL CHANGES CORRELATED WITH EVOLUTIONARY CHANGES OF BODY SIZE , 1948, Evolution; international journal of organic evolution.

[42]  C. McClain,et al.  Biodiversity and body size are linked across metazoans , 2009, Proceedings of the Royal Society B: Biological Sciences.

[43]  B. Swedmark THE INTERSTITIAL FAUNA OF MARINE SAND , 1964 .

[44]  M. Sörensson Morphological and taxonomical novelties in the world’s smallest beetles, and the first Old World record of Nanosellini (Coleoptera: Ptiliidae) , 1997 .

[45]  Jon H. Kaas,et al.  Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .

[46]  G. Boivin Reproduction and Immature Development of Egg Parasitoids , 2009 .

[47]  S. Laughlin,et al.  Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.

[48]  L. Chittka,et al.  Information processing in miniature brains , 2011, Proceedings of the Royal Society B: Biological Sciences.

[49]  Challenging limits: Ultrastructure and size‐related functional constraints of the compound eye of Stigmella microtheriella (Lepidoptera: Nepticulidae) , 2012, Journal of morphology.

[50]  W. Eberhard Miniaturized orb-weaving spiders: behavioural precision is not limited by small size , 2007, Proceedings of the Royal Society B: Biological Sciences.

[51]  John T. Huber,et al.  A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods , 2013 .

[52]  V. Meyer-Rochow,et al.  How small can small be: The compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size , 2010, Visual Neuroscience.

[53]  Alexander Borst,et al.  Preserving Neural Function under Extreme Scaling , 2013, PloS one.

[54]  A. Polilov Anatomy of the smallest coleoptera, featherwing beetles of the tribe nanosellini (Coleoptera, Ptiliidae), and limits of insect miniaturization , 2008, Entomological Review.

[55]  John W. Beardsley,et al.  A New Genus of Fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae) , 2000 .

[56]  V. Grebennikov How small you can go: Factors limiting body miniaturization in winged insects with a review of the pantropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae) , 2008 .

[57]  D. Wake,et al.  Miniaturization of Body Size: Organismal Consequences and Evolutionary Significance , 1993 .

[58]  R. Bernstein,et al.  Relationships between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant. , 1969, Brain research.

[59]  Wulfila Gronenberg,et al.  Brain Allometry in Bumblebee and Honey Bee Workers , 2005, Brain, Behavior and Evolution.

[60]  A. Polilov,et al.  The smallest insects evolve anucleate neurons. , 2011, Arthropod structure & development.

[61]  A. Polilov,et al.  Comparative morphological analysis of compound eye miniaturization in minute hymenoptera. , 2015, Arthropod structure & development.