Small is beautiful: features of the smallest insects and limits to miniaturization.
暂无分享,去创建一个
[1] Giant and dwarf axons in a miniature insect, Encarsia formosa, (Hymenoptera, Calcididae). , 2012, Arthropod structure & development.
[2] Wulfila Gronenberg,et al. Brain Allometry and Neural Plasticity in the Bumblebee Bombus occidentalis , 2010, Brain, Behavior and Evolution.
[3] V. Novotný,et al. Why are there no small species among xylem-sucking insects? , 1997, Evolutionary Ecology.
[4] S. Laughlin,et al. Energy limitation as a selective pressure on the evolution of sensory systems , 2008, Journal of Experimental Biology.
[5] W. Wcislo,et al. Grade Changes in Brain–Body Allometry: Morphological and Behavioural Correlates of Brain Size in Miniature Spiders, Insects and Other Invertebrates , 2011 .
[6] T. Gregory,et al. Coincidence, coevolution, or causation? DNA content, cellsize, and the C‐value enigma , 2001, Biological reviews of the Cambridge Philosophical Society.
[7] D. Borror,et al. An introduction to the study of insects , 1954 .
[8] R. Snodgrass. The morphology of insect sense organs and the sensory nervous system , 1926 .
[9] Jean-Sébastien Pierre,et al. Effects of within- and among-patch experiences on the patch-leaving decision rules in an insect parasitoid , 2005, Behavioral Ecology and Sociobiology.
[10] E. García‐Barros,et al. Taxonomic patterns in the egg to body size allometry of butter- flies and skippers (Papilionoidea & Hesperiidae) , 2002 .
[11] R. Beutel,et al. Morphology of the minute larva of Ptinella tenella, with special reference to effects of miniaturisation and the systematic position of Ptiliidae (Coleoptera: Staphylinoidea). , 2002, Arthropod structure & development.
[12] Eric J. Warrant,et al. Absorption of white light in photoreceptors , 1998, Vision Research.
[13] I. Meinertzhagen. The organisation of invertebrate brains: cells, synapses and circuits , 2010 .
[14] R. G. Beutel,et al. Larval head morphology of Hydroscapha natans (Coleoptera, Myxophaga) with reference to miniaturization and the systematic position of Hydroscaphidae , 1998, Zoomorphology.
[15] B. Leander,et al. Masters of miniaturization: Convergent evolution among interstitial eukaryotes , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.
[16] D. J. Jackson. Observations on the biology of Caraphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytiscidae (Coleoptera). 2. Immature stages and seasonal history with a review of Mymarid larvae , 1961, Parasitology.
[17] Eric J. Warrant,et al. Arthropod eye design and the physical limits to spatial resolving power , 1993, Progress in Neurobiology.
[18] A. Polilov. Thoracic musculature of Sericoderus lateralis (Coleoptera, Corylophidae): Miniaturization effects and flight muscle degeneration related to development of reproductive system , 2011, Entomological Review.
[19] R. Beutel,et al. Miniaturisation effects in larvae and adults of Mikado sp. (Coleoptera: Ptiliidae), one of the smallest free-living insects. , 2009, Arthropod structure & development.
[20] K. Schmidt-Nielsen,et al. Scaling, why is animal size so important? , 1984 .
[21] A. Polilov,et al. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 1. The smallest Coleoptera (Ptiliidae) , 2013, Entomological Review.
[22] Rüdiger Wehner,et al. On Being Small: Brain Allometry in Ants , 2006, Brain, Behavior and Evolution.
[23] A. Polilov,et al. Peculiarities of the brain organization and fine structure in small insects related to miniaturization. 2. The smallest Hymenoptera (Mymaridae, Trichogrammatidae) , 2013, Entomological Review.
[24] Linda K. Dybas,et al. Ultrastructure of mature spermatozoa of a minute featherwing beetle from Sri Lanka (Coleoptera, Ptiliidae: Bambara) , 1987, Journal of morphology.
[25] P. Timberlake. Description of new chalcid-flies from Hawaii and Mexico (Hymenoptera). , 1924 .
[26] R. Beutel,et al. Developmental stages of the hooded beetle Sericoderus lateralis (Coleoptera: Corylophidae) with comments on the phylogenetic position and effects of miniaturization. , 2010, Arthropod structure & development.
[27] L. Hemerik,et al. Flexible Use of Patch-Leaving Mechanisms in a Parasitoid Wasp , 2006, Journal of Insect Behavior.
[28] B. J. Cole. Size and behavior in ants: Constraints on complexity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.
[29] J. Niven,et al. The allometry of CNS size and consequences of miniaturization in orb-weaving and cleptoparasitic spiders. , 2011, Arthropod structure & development.
[30] E. García‐Barros. Body size, egg size, and their interspecific relationships with ecological and life history traits in butterflies (Lepidoptera: Papilionoidea, Hesperioidea). , 2000 .
[31] Hans-Wilhelm Pohl. Die Primärlarven der Fächerflügler - evolutionäre Trends (Insecta, Strepsiptera) , 1998 .
[32] Edward L. Mockford,et al. A New Species of Dicopomorpha (Hymenoptera: Mymaridae) with Diminutive, Apterous Males , 1997 .
[33] R. Beutel,et al. Extremely miniaturised and highly complex: the thoracic morphology of the first instar larva of Mengenilla chobauti (Insecta, Strepsiptera). , 2010, Arthropod structure & development.
[34] M. Seid,et al. The Allometry of Brain Miniaturization in Ants , 2011, Brain, Behavior and Evolution.
[35] Gérard Delvare. Sur les Megaphragma de Guadeloupe avec la description d'une espèce nouvelle (Hymenoptera, Trichogrammatidae) , 1993 .
[36] S. Laughlin,et al. Ion-Channel Noise Places Limits on the Miniaturization of the Brain’s Wiring , 2005, Current Biology.
[37] William G. Eberhard,et al. Are smaller animals behaviourally limited? Lack of clear constraints in miniature spiders , 2011, Animal Behaviour.
[38] R. Beutel,et al. Strepsipteran brains and effects of miniaturization (Insecta) , 2005 .
[39] J. Niven,et al. Are Bigger Brains Better? , 2009, Current Biology.
[40] L. Chittka,et al. Breaking Haller's Rule: Brain-Body Size Isometry in a Minute Parasitic Wasp , 2013, Brain, Behavior and Evolution.
[41] B. Rensch. HISTOLOGICAL CHANGES CORRELATED WITH EVOLUTIONARY CHANGES OF BODY SIZE , 1948, Evolution; international journal of organic evolution.
[42] C. McClain,et al. Biodiversity and body size are linked across metazoans , 2009, Proceedings of the Royal Society B: Biological Sciences.
[43] B. Swedmark. THE INTERSTITIAL FAUNA OF MARINE SAND , 1964 .
[44] M. Sörensson. Morphological and taxonomical novelties in the world’s smallest beetles, and the first Old World record of Nanosellini (Coleoptera: Ptiliidae) , 1997 .
[45] Jon H. Kaas,et al. Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller , 2000 .
[46] G. Boivin. Reproduction and Immature Development of Egg Parasitoids , 2009 .
[47] S. Laughlin,et al. Fly Photoreceptors Demonstrate Energy-Information Trade-Offs in Neural Coding , 2007, PLoS biology.
[48] L. Chittka,et al. Information processing in miniature brains , 2011, Proceedings of the Royal Society B: Biological Sciences.
[49] Challenging limits: Ultrastructure and size‐related functional constraints of the compound eye of Stigmella microtheriella (Lepidoptera: Nepticulidae) , 2012, Journal of morphology.
[50] W. Eberhard. Miniaturized orb-weaving spiders: behavioural precision is not limited by small size , 2007, Proceedings of the Royal Society B: Biological Sciences.
[51] John T. Huber,et al. A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods , 2013 .
[52] V. Meyer-Rochow,et al. How small can small be: The compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size , 2010, Visual Neuroscience.
[53] Alexander Borst,et al. Preserving Neural Function under Extreme Scaling , 2013, PloS one.
[54] A. Polilov. Anatomy of the smallest coleoptera, featherwing beetles of the tribe nanosellini (Coleoptera, Ptiliidae), and limits of insect miniaturization , 2008, Entomological Review.
[55] John W. Beardsley,et al. A New Genus of Fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae) , 2000 .
[56] V. Grebennikov. How small you can go: Factors limiting body miniaturization in winged insects with a review of the pantropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae) , 2008 .
[57] D. Wake,et al. Miniaturization of Body Size: Organismal Consequences and Evolutionary Significance , 1993 .
[58] R. Bernstein,et al. Relationships between foraging efficiency and the size of the head and component brain and sensory structures in the red wood ant. , 1969, Brain research.
[59] Wulfila Gronenberg,et al. Brain Allometry in Bumblebee and Honey Bee Workers , 2005, Brain, Behavior and Evolution.
[60] A. Polilov,et al. The smallest insects evolve anucleate neurons. , 2011, Arthropod structure & development.
[61] A. Polilov,et al. Comparative morphological analysis of compound eye miniaturization in minute hymenoptera. , 2015, Arthropod structure & development.