High-repetition-rate all-fiber femtosecond laser with an optical integrated component.

We demonstrate a high-repetition-rate all-fiber soliton pulse laser mode-locked by the nonlinear polarization rotation technique. The laser cavity is effectively shortened by incorporating an optical integrated component possessing the hybrid functions of a polarization-dependent isolator, a wavelength-division multiplexer, and an output coupler. Resultant output soliton pulses have a fundamental repetition rate of 384 MHz, a 3-dB spectral bandwidth of 25.2 nm, and a dechirped pulse duration of 115 fs. By using an external power amplification and pulse recompression system, the average output power of the laser is boosted to 207 mW. The amplified pulses have a 2.33-ps duration, which is recompressed to 340 fs. Numerical simulations reproduce the generation of high-repetition-rate soliton pulses in the fiber laser. Such a simple and low-cost high-repetition-rate fiber laser is a potential laser source for various practical applications.

[1]  Ingmar Hartl,et al.  Ultrafast fibre lasers , 2013, Nature Photonics.

[2]  Zhongmin Yang,et al.  3 GHz, fundamentally mode-locked, femtosecond Yb-fiber laser. , 2012, Optics letters.

[3]  Xiaoming Wei,et al.  A femtosecond hybrid mode-locking fiber ring laser at 409 MHz , 2013 .

[4]  I. Hartl,et al.  Ultrafast Fiber Laser Technology , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  M. Liu,et al.  2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. , 2013, Optics letters.

[6]  Franz X Kärtner,et al.  Compact, stable 1 GHz femtosecond Er-doped fiber lasers. , 2010, Applied optics.

[7]  Zhigang Zhang,et al.  Compact 517 MHz soliton mode-locked Er-doped fiber ring laser , 2016 .

[8]  O. Okhotnikov,et al.  Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications , 2004 .

[9]  Zhenhua Ni,et al.  Atomic‐Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers , 2009, 0910.5820.

[10]  K. Abramski,et al.  Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22 GHz , 2012 .

[11]  S. Cundiff Metrology: New generation of combs , 2007, Nature.

[12]  M. Ferri,et al.  Active and Passive Mode-Locked Fiber Lasers for High-Speed High-Resolution Photonic Analog-to-Digital Conversion , 2012, IEEE Journal of Quantum Electronics.

[13]  Zhigang Zhang,et al.  503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator. , 2011, Optics express.

[14]  A Bartels,et al.  Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. , 2008, Optics letters.

[15]  Xiaoming Wei,et al.  A Compact 500 MHz Femtosecond All-Fiber Ring Laser , 2013 .

[16]  Heping Li,et al.  Ultrafast erbium-doped fiber laser mode-locked by a CVD-grown molybdenum disulfide (MoS2) saturable absorber. , 2014, Optics express.

[17]  Jianping Chen,et al.  41.9  fs hybridly mode-locked Er-doped fiber laser at 212  MHz repetition rate. , 2014, Optics letters.

[18]  S. Wen,et al.  Molybdenum disulfide (MoS₂) as a broadband saturable absorber for ultra-fast photonics. , 2014, Optics express.

[19]  Meng Liu,et al.  Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. , 2015, Optics express.

[20]  W Sibbett,et al.  The development and application of femtosecond laser systems. , 2012, Optics express.

[21]  Irl N. Duling,et al.  Experimental study of sideband generation in femtosecond fiber lasers , 1994 .

[22]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[23]  Zhigang Zhang,et al.  37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate. , 2010, Optics letters.

[24]  S. Wen,et al.  Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material. , 2015, Optics express.

[25]  T. Newson,et al.  Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation , 1992 .

[26]  Dingyuan Tang,et al.  Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. , 2009, Optics express.

[27]  Jianlin Zhao,et al.  WS₂ saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 µm. , 2015, Optics express.

[28]  C. Lu,et al.  High Fundamental Repetition Rate Fiber Lasers Operated in Strong Normal Dispersion Regime , 2009, IEEE Photonics Technology Letters.

[29]  Shinji Yamashita,et al.  10 GHz fundamental mode fiber laser using a graphene saturable absorber , 2012 .

[30]  Hermann A. Haus,et al.  Ultrashort-pulse fiber ring lasers , 1997 .

[31]  D. Tang,et al.  Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers , 2005, 0910.5810.

[32]  A. Mafi,et al.  Scaling analysis of transverse Anderson localization in a disordered optical waveguide , 2016, 1604.00909.