Bayesian econometrics and forecasting

Contemporary Bayesian forecasting methods draw on foundations in subjective probability and preferences laid down in the mid-twentieth century, and utilize numerical methods developed since that time in their implementation. These methods unify the tasks of forecasting and model evaluation. They also provide tractable solutions for problems that prove difficult when approached using non-Bayesian methods. These advantages arise from the fact that the conditioning in Bayesian probability forecasting is the same as the conditioning in the underlying decision problems.

[1]  S. E. Fienberg,et al.  Studies in Bayesian Econometrics and Statistics. In Honor of Leonard J. Savage. , 1976 .

[2]  P. Wakker,et al.  Eliciting von Neumann-Morgenstern Utilities When Probabilities Are Distorted or Unknown , 1996 .

[3]  John Geweke,et al.  Using Simulation Methods for Bayesian Econometric Models , 1999 .

[4]  H. Kahn,et al.  Methods of Reducing Sample Size in Monte Carlo Computations , 1953, Oper. Res..

[5]  L. J. Savage,et al.  The Utility Analysis of Choices Involving Risk , 1948, Journal of Political Economy.

[6]  John Geweke,et al.  Monte carlo simulation and numerical integration , 1995 .

[7]  L. Kruschwitz,et al.  Daniel Bernoulli: Entwurf einer neuen Theorie zur Bewertung von Lotterien. “Specimen theoriae novae de mensura sortis”, Commentarii Academiae Scientiarum Imperialis Petropolitanae 1738, S. 175–192. Aus dem Lateinischen übersetzt , 1996 .

[8]  John Geweke,et al.  Simulation-based Bayesian inference for economic time series , 1996 .

[9]  Alain Monfort,et al.  Simulation-based inference: A survey with special reference to panel data models , 1993 .

[10]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[11]  Kenneth E. Boulding,et al.  Essays in Positive Economics. , 1954 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[13]  John Geweke,et al.  Federal Reserve Bank of Minneapolis Research Department Staff Report 249 Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication , 2022 .

[14]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  M. Geisel Bayesian Comparisons of Simple Macroeconomic Models , 1973 .

[16]  T. Kloek,et al.  Bayesian estimates of equation system parameters, An application of integration by Monte Carlo , 1976 .

[17]  L. J. Savage,et al.  The Expected-Utility Hypothesis and the Measurability of Utility , 1952, Journal of Political Economy.