Temperature-Compensated High-Frequency Surface Acoustic Wave Device
暂无分享,去创建一个
Tian-Ling Ren | Mansun Chan | Changjian Zhou | Yi Yang | T. Ren | Yi Yang | M. Chan | Changjian Zhou | Cary Y. Yang | Hualin Cai | Hualin Cai
[1] H. Campanella,et al. Aluminum Nitride Lamb-Wave Resonators for High-Power High-Frequency Applications , 2013, IEEE Electron Device Letters.
[2] K. Hashimoto,et al. Recent development of temperature compensated SAW Devices , 2011, 2011 IEEE International Ultrasonics Symposium.
[3] R. Takayama,et al. Study of Relationship between Layer Profile of SiO , 2011 .
[5] T. Ren,et al. Surface acoustic wave characteristics based on c-axis (006) LiNbO3/diamond/silicon layered structure , 2011 .
[6] K. Hashimoto,et al. Miniature Surface Acoustic Wave Duplexer Using SiO2/Al/LiNbO3 Structure for Wide-Band Code-Division Multiple-Access System , 2008 .
[7] F. Ndagijimana,et al. Modeling for temperature compensation and temperature characterizations of BAW resonators at GHz frequencies , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[8] Wei Pang,et al. Ultra Temperature-Stable Bulk-Acoustic-Wave Resonators with SiO 2 Compensation Layer , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[9] K. Sreenivas,et al. Temperature stable LiNbO3 surface acoustic wave device with diode sputtered amorphous TeO2 over-layer , 2005 .
[10] M. Shur,et al. Leaky surface acoustic waves in Z-LiNbO3 substrates with epitaxial AIN overlays , 2004 .
[11] Sylvain Ballandras,et al. Scattering matrix method for modeling acoustic waves in piezoelectric, fluid, and metallic multilayers , 2003 .
[12] K. Petersen. Dynamic micromechanics on silicon: Techniques and devices , 1978, IEEE Transactions on Electron Devices.
[13] F. S. Welsh,et al. Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .