A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection

[1]  F. Badaracco,et al.  Superconducting thin film spiral coils as low-noise cryogenic actuators , 2021, Journal of Physics: Conference Series.

[2]  M. Cassé,et al.  Low-power transimpedance amplifier for cryogenic integration with quantum devices , 2020 .

[3]  A. Marcelli,et al.  Lunar Gravitational-wave Antenna , 2020, The Astrophysical Journal.

[4]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[5]  J. Heijningen,et al.  A fifty-fold improvement of thermal noise limited inertial sensitivity by operating at cryogenic temperatures , 2019, Journal of Instrumentation.

[6]  E. Charbon,et al.  Characterization and Modeling of Mismatch in Cryo-CMOS , 2020, IEEE Journal of the Electron Devices Society.

[7]  Nicolas Produit,et al.  The Rasnik 3-point optical alignment system , 2019, Journal of Instrumentation.

[8]  Arnout Beckers,et al.  Cryogenic MOS Transistor Model , 2018, IEEE Transactions on Electron Devices.

[9]  A. Bertolini,et al.  A novel interferometrically read out inertial sensor for future gravitational wave detectors , 2018, 2018 IEEE Sensors Applications Symposium (SAS).

[10]  E. Charbon,et al.  Characterization and Compact Modeling of Nanometer CMOS Transistors at Deep-Cryogenic Temperatures , 2018, IEEE Journal of the Electron Devices Society.

[11]  Arnout Beckers,et al.  Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K , 2018, IEEE Journal of the Electron Devices Society.

[12]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[13]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[14]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[15]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[16]  Yoon-Ha Jeong,et al.  Low-Temperature Performance of Nanoscale MOSFET for Deep-Space RF Applications , 2008, IEEE Electron Device Letters.

[17]  Z. Svindrych,et al.  Operational amplifiers operating in temperature range from 300 to 4.2 K , 2008 .

[18]  Virginio Sannibale,et al.  Mechanical design of a single-axis monolithic accelerometer for advanced seismic attenuation systems , 2006 .

[19]  A simple high-sensitivity interferometric position sensor for test mass control on an advanced LIGO interferometer , 1999 .

[20]  Gabor C. Temes,et al.  Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization , 1996, Proc. IEEE.

[21]  K. Jenkins,et al.  On the low-temperature static and dynamic properties of high-performance silicon bipolar transistors , 1989 .