Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems

Abstract Recent developments promise to increase greatly the popularity of maximum likelihood (ml) as a technique for estimating variance components. Patterson and Thompson (1971) proposed a restricted maximum likelihood (reml) approach which takes into account the loss in degrees of freedom resulting from estimating fixed effects. Miller (1973) developed a satisfactory asymptotic theory for ml estimators of variance components. There are many iterative algorithms that can be considered for computing the ml or reml estimates. The computations on each iteration of these algorithms are those associated with computing estimates of fixed and random effects for given values of the variance components.

[1]  S. R. Searle,et al.  A Comparison of Variance Component Estimators , 1976 .

[2]  David Birkes,et al.  Invariant Quadratic Unbiased Estimation for Two Variance Components , 1976 .

[3]  David A. Harville,et al.  Extension of the Gauss-Markov Theorem to Include the Estimation of Random Effects , 1976 .

[4]  S. R. Searle,et al.  Restricted Maximum Likelihood (REML) Estimation of Variance Components in the Mixed Model , 1976 .

[5]  Robert I. Jennrich,et al.  Newton-Raphson and Related Algorithms for Maximum Likelihood Variance Component Estimation , 1976 .

[6]  B. Efron,et al.  Multivariate Empirical Bayes and Estimation of Covariance Matrices , 1976 .

[7]  D. A. Sprott Marginal and conditional sufficiency , 1975 .

[8]  J. Seely An Example of an Inquadmissible Analysis of Variance Estimator for a Variance Component , 1975 .

[9]  Robin Thompson A Note on the W Transformation , 1975 .

[10]  C. R. Henderson,et al.  Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.

[11]  W. Murray Numerical Methods for Unconstrained Optimization , 1975 .

[12]  R. R. Hocking,et al.  Some Analytical and Numerical Comparisons of Estimators for the Mixed A.O.V. Model , 1975 .

[13]  D. Harville Bayesian inference for variance components using only error contrasts , 1974 .

[14]  Philip E. Gill,et al.  Numerical methods for constrained optimization , 1974 .

[15]  Edward J. Beltrami,et al.  An Algorithmic Approach to Nonlinear Analysis and Optimization , 1973 .

[16]  J. Miller,et al.  Asymptotic Properties and Computation of Maximum Likelihood Estimates in the Mixed Model of the Analysis of Variance , 1973 .

[17]  H. Hartley,et al.  Computing Maximum Likelihood Estimates for the Mixed A.O.V. Model Using the W Transformation , 1973 .

[18]  Lynn Roy LaMotte,et al.  Quadratic Estimation of Variance Components , 1973 .

[19]  S. R. Searle,et al.  Prediction, Mixed Models, and Variance Components , 1973 .

[20]  Robin Thompson,et al.  The estimation of variance and covariance components with an application when records are subject to culling , 1973 .

[21]  B. Efron,et al.  Stein's Estimation Rule and Its Competitors- An Empirical Bayes Approach , 1973 .

[22]  T. W. Anderson Asymptotically Efficient Estimation of Covariance Matrices with Linear Structure , 1973 .

[23]  C. R. Henderson SIRE EVALUATION AND GENETIC TRENDS , 1973 .

[24]  D. B. Duncan,et al.  Linear Dynamic Recursive Estimation from the Viewpoint of Regression Analysis , 1972 .

[25]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[26]  C. R. Rao,et al.  Estimation of Variance and Covariance Components in Linear Models , 1972 .

[27]  D. Cox,et al.  The Theory of Statistical Inference. , 1972 .

[28]  S. R. Searle Generalized Inverse Matrices , 1971 .

[29]  H. D. Patterson,et al.  Recovery of inter-block information when block sizes are unequal , 1971 .

[30]  C. Radhakrishna Rao,et al.  Minimum variance quadratic unbiased estimation of variance components , 1971 .

[31]  T. W. Anderson Estimation of Covariance Matrices with Linear Structure and Moving Average Processes of Finite Order , 1971 .

[32]  S. R. Searle,et al.  Best Quadratic Unbiased Estimation of Variance Components from Unbalanced Data in the 1-way Classification , 1971 .

[33]  C. R. Rao,et al.  Estimation of variance and covariance components--MINQUE theory , 1971 .

[34]  E. A. Sylvestre,et al.  Elimination of Linear Parameters in Nonlinear Regression , 1971 .

[35]  Lionel Weiss,et al.  Asymptotic Properties of Maximum Likelihood Estimators in Some Nonstandard Cases , 1971 .

[36]  S. R. Searle A Biometrics Invited Paper. Topics in Variance Component Estimation , 1971 .

[37]  S. R. Searle Linear Models , 1971 .

[38]  G. Zyskind Introduction to Matrices with Applications in Statistics , 1970 .

[39]  H. Hartley,et al.  A computer program for the mixed analysis of variance model based on maximum likelihood , 1970 .

[40]  D. Harville Corrections: Quadratic Unbiased Estimation of Variance Components for the One-Way Classification , 1970 .

[41]  Yonathan Bard,et al.  Comparison of Gradient Methods for the Solution of Nonlinear Parameter Estimation Problems , 1970 .

[42]  Calyampudi R. Rao Estimation of Heteroscedastic Variances in Linear Models , 1970 .

[43]  M. Powell A Survey of Numerical Methods for Unconstrained Optimization , 1970 .

[44]  Robin Thompson Iterative Estimation of Variance Components for Non-Orthogonal Data , 1969 .

[45]  S. Zacks,et al.  Mean Square Efficiency of Estimators of Variance Components , 1969 .

[46]  J. Hartigan Linear Bayesian Methods , 1969 .

[47]  D. Harville Quadratic unbiased estimation of variance components for the one-way classification , 1969 .

[48]  J. Rao On Expectations, Variances, and Covariances of ANOVA Mean Squares by 'Synthesis' , 1968 .

[49]  S. R. Searle Another Look at Henderson's Methods of Estimating Variance Components , 1968 .

[50]  J. A. Nelder,et al.  The Combination of Information in Generally Balanced Designs , 1968 .

[51]  J. A. Nelder Regression, Model‐Building and Invariance , 1968 .

[52]  S. R. Searle Large Sample Variances of Maximum Likelihood Estimators of Variance Components , 1968 .

[53]  J. Westlake Handbook of Numerical Matrix Inversion and Solution of Linear Equations , 1968 .

[54]  C. R. Henderson,et al.  An interative procedure for estimating fixed effects and variance components in mixed model situations. , 1968, Biometrics.

[55]  H. Hartley,et al.  Maximum-likelihood estimation for the mixed analysis of variance model. , 1967, Biometrika.

[56]  S. Goldfeld,et al.  Maximization by Quadratic Hill-Climbing , 1966 .

[57]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[58]  E. Nering,et al.  Linear Algebra and Matrix Theory , 1964 .

[59]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[60]  W. A. Thompson The Problem of Negative Estimates of Variance Components , 1962 .

[61]  Charles W. Carroll The Created Response Surface Technique for Optimizing Nonlinear, Restrained Systems , 1961 .

[62]  F. Graybill,et al.  Theorems Concerning Eisenhart's Model II , 1961 .

[63]  Werner Gautschi Some Remarks on Herbach's Paper, "Optimum Nature of the F-Test for Model II in the Balanced Case" , 1959 .

[64]  L. Herbach Properties of Model II--Type Analysis of Variance Tests, A: Optimum Nature of the $F$-Test for Model II in the Balanced Case , 1959 .

[65]  Ralph A. Bradley,et al.  ONE-WAY VARIANCES IN A TWO-WAY CLASSIFICATION , 1958 .

[66]  C. R. Henderson ESTIMATION OF VARIANCE AND COVARIANCE COMPONENTS , 1953 .

[67]  T. A. Bancroft,et al.  Statistical Theory in Research , 1952, Agronomy Journal.

[68]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .