A weighted strategy to handle likelihood uncertainty in Bayesian inference

The sensitivity of posterior inferences to model specification can be considered as an indicator of the presence of outliers, that are to be considered as highly unlikely values under the assumed model. The occurrence of anomalous values can seriously alter the shape of the likelihood function and lead to posterior distributions far from those one would obtain without these data inadequacies. In order to deal with these hindrances, a robust approach is discussed, which allows us to obtain outliers’ resistant posterior distributions with properties similar to those of a proper posterior distribution. The methodology is based on the replacement of the genuine likelihood by a weighted likelihood function in the Bayes’ formula.

[1]  Anthony O'Hagan,et al.  Outliers and Credence for Location Parameter Inference , 1990 .

[2]  Marianthi Markatou,et al.  Test of hypotheses based on the weighted likelihood , 2001 .

[3]  Bruce G. Lindsay,et al.  The residual adjustment function and weighted likelihood: a graphical interpretation of robustness of minimum disparity estimators , 2002 .

[4]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[5]  C. Field,et al.  Robust Estimation - a Weighted Maximum-Likelihood Approach , 1994 .

[6]  Luis R. Pericchi,et al.  Posterior robustness with more than one sampling model , 1994 .

[7]  Marianthi Markatou,et al.  Weighted Likelihood Equations with Bootstrap Root Search , 1998 .

[8]  J. Monahan,et al.  Proper likelihoods for Bayesian analysis , 1992 .

[9]  B. Lindsay,et al.  Minimum disparity estimation for continuous models: Efficiency, distributions and robustness , 1994 .

[10]  A. Dawid Posterior expectations for large observations , 1973 .

[11]  N. Lazar Bayesian empirical likelihood , 2003 .

[12]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[13]  J. Alexander,et al.  Theory and Methods: Critical Essays in Human Geography , 2008 .

[14]  B. Lindsay,et al.  Weighted likelihood estimating equations: The discrete case with applications to logistic regression , 1997 .

[15]  David Ríos Insua,et al.  Robust Bayesian analysis , 2000 .

[16]  Russell V. Lenth,et al.  Consistency of Deviance‐Based M Estimators , 1987 .

[17]  A. Brix Bayesian Data Analysis, 2nd edn , 2005 .

[18]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[19]  B. Lindsay Efficiency versus robustness : the case for minimum Hellinger distance and related methods , 1994 .

[20]  Vic Barnett,et al.  Outliers in Statistical Data , 1980 .

[21]  James O. Berger,et al.  An overview of robust Bayesian analysis , 1994 .

[22]  Claudio Agostinelli,et al.  Notes on Pearson residuals and weighted likelihood estimating equations , 2006 .

[23]  Prakasa Rao Nonparametric functional estimation , 1983 .

[24]  Feifang Hu,et al.  The weighted likelihood , 2002 .

[25]  M. Lavine Sensitivity in Bayesian Statistics: The Prior and the Likelihood , 1991 .

[26]  Claudio Agostinelli,et al.  Estimating the model of the majority of the data , 2009 .

[27]  M. P. Windham Robustifying Model Fitting , 1995 .

[28]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[29]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[30]  C. Agostinelli Robust model selection in regression via weighted likelihood methodology , 2002 .

[31]  G. C. Tiao,et al.  A Further Look at Robustness via Bayes's Theorem , 1962 .

[32]  A. O'Hagan,et al.  On Outlier Rejection Phenomena in Bayes Inference , 1979 .

[33]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[34]  Laura Ventura,et al.  Robust likelihood functions in Bayesian inference , 2008 .

[35]  Noel A Cressie,et al.  Cressie‐Read Statistic , 2006 .