Adaptive optics in astronomy

Since Galileo’s first observations in 1609, telescopes have grown dramatically in size. Larger telescopes collect more light, allowing astronomers to detect fainter sources and to look further back in time towards the birth of the universe. The angular resolution of these telescopes, however, has been limited by turbulence in the earth’s atmosphere. This limitation can be dramatically reduced with the use of adaptive optics (AO) to measure and correct the blurring introduced by atmospheric turbulence. AO is now routinely used for science observations on the world’s largest telescopes and is providing a much more detailed view of our universe.

[1]  Steven Cornelissen,et al.  Performance analysis of two high actuator count MEMS deformable mirrors , 2013, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[2]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[3]  Luke R. Taylor,et al.  25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star. , 2009, Optics express.

[4]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[5]  Paul J. Stomski,et al.  A low density of 0.8 g cm-3 for the Trojan binary asteroid 617 Patroclus , 2006, Nature.

[6]  Vincent Fesquet,et al.  System overview of 30 W and 55 W sodium guide star laser systems , 2010, Astronomical Telescopes + Instrumentation.

[7]  Peter Hauschildt,et al.  STUDYING THE PHYSICAL DIVERSITY OF LATE-M DWARFS WITH DYNAMICAL MASSES,, , 2010, 1007.4197.

[8]  Roberto Ragazzoni,et al.  Preparing for the phase B of the E-ELT MCAO module project , 2014, Astronomical Telescopes and Instrumentation.

[9]  M. E. Brown,et al.  SALTS AND RADIATION PRODUCTS ON THE SURFACE OF EUROPA , 2013, 1303.0894.

[10]  Michael H. Wong,et al.  Persistent rings in and around Jupiter's anticyclones - Observations and theory , 2010 .

[11]  M. Showalter,et al.  New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring , 2006, Science.

[12]  T. Treu,et al.  Gravitational Lensing: Einstein’s unfinished symphony , 2015 .

[13]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[14]  Christophe Dupuy,et al.  ESO adaptive optics facility progress and first laboratory test results , 2014, Astronomical Telescopes and Instrumentation.

[15]  Bruce A. Macintosh,et al.  Detection of Carbon Monoxide and Water Absorption Lines in an Exoplanet Atmosphere , 2013, Science.

[16]  Peter L. Wizinowich,et al.  Astronomical Science with Adaptive Optics at the W. M. Keck Observatory , 2013 .

[17]  F Roddier,et al.  Curvature sensing and compensation: a new concept in adaptive optics. , 1988, Applied optics.

[18]  Claire E. Max,et al.  DAVINCI: a high-performance imager and integral field spectrograph for the W. M. Keck Observatory's next-generation adaptive optics facility , 2010, Astronomical Telescopes + Instrumentation.

[19]  I. de Pater,et al.  Widespread Morning Drizzle on Titan , 2007, Science.

[20]  Roberto Biasi,et al.  The Giant Magellan Telescope adaptive optics program , 2014, Astronomical Telescopes and Instrumentation.

[21]  Thierry Fusco,et al.  Keck AO survey of Io global volcanic activity between 2 and 5 μm , 2005 .

[22]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[23]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[24]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[25]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[26]  E. Schaller,et al.  The Mass of Dwarf Planet Eris , 2007, Science.

[27]  Richard S. Ellis,et al.  The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3 , 2008, Nature.

[28]  Armando Riccardi,et al.  Contactless thin adaptive mirror technology: past, present, and future , 2010, Astronomical Telescopes + Instrumentation.

[29]  Andreas Quirrenbach,et al.  Status of the ARGOS project , 2014, Astronomical Telescopes and Instrumentation.

[30]  Gerard Rousset,et al.  First diffraction-limited astronomical images with adaptive optics , 1990, Astronomical Telescopes and Instrumentation.

[31]  Roberto Ragazzoni Pushing the limits of NGSs solely AO: GMCAO and beyond , 2014, Astronomical Telescopes and Instrumentation.

[32]  High velocity dispersion in a rare grand-design spiral galaxy at redshift z = 2.18 , 2012, Nature.

[33]  Patrick Leisching,et al.  Series production of next-generation guide-star lasers at TOPTICA and MPBC , 2014, Astronomical Telescopes and Instrumentation.

[34]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[35]  C. Fassnacht,et al.  ADAPTIVE OPTICS OBSERVATIONS OF B0128+437: A LOW-MASS, HIGH-REDSHIFT GRAVITATIONAL LENS , 2009, 0912.2344.

[36]  J. P. McKean,et al.  Gravitational detection of a low-mass dark satellite galaxy at cosmological distance , 2012, Nature.

[37]  Jean-Pierre Véran,et al.  NFIRAOS: first facility AO system for the Thirty Meter Telescope , 2014, Astronomical Telescopes and Instrumentation.

[38]  Mark A. Ealey,et al.  Characterization of three advanced deformable mirrors , 1998, Optics & Photonics.

[39]  R. Holzlohner,et al.  Optimization of cw sodium laser guide star efficiency , 2009, 0908.1527.

[40]  Olivier Guyon,et al.  Performance of the deformable mirror for Subaru LGSAO , 2006, SPIE Astronomical Telescopes + Instrumentation.

[41]  Michael C. Liu,et al.  TWO EXTRAORDINARY SUBSTELLAR BINARIES AT THE T/Y TRANSITION AND THE Y-BAND FLUXES OF THE COOLEST BROWN DWARFS, , 2012, 1206.4044.

[42]  D. S. Acton,et al.  Solar imaging with a segmented adaptive mirror. , 1992, Applied optics.

[43]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[44]  James M. Spinhirne,et al.  Two generations of laser-guide-star adaptive-optics experiments at the Starfire Optical Range , 1994 .

[45]  Jessica R. Lu,et al.  The Shortest-Known–Period Star Orbiting Our Galaxy’s Supermassive Black Hole , 2012, Science.