Investigation of Dielectric, Ferroelectric, and Strain Responses of (1 – x)[0.90(Bi0.5Na0.5)TiO3 – 0.10SrTiO3] – xCuO Ceramics

The low-temperature sintering of (Bi0.5Na0.5)TiO3-based ceramics can be achieved by sintering aid CuO. Piezoelectric ceramics (1 – x)[0.90(Bi0.5Na0.5)TiO3 – 0.10SrTiO3] – xCuO (BNT-ST-Cu) with x = 0, 0.01, 0.02, 0.03, and 0.04 were prepared through the mixed oxide route. A tetragonal structure was indexed for the undoped sample. Its structure was found to be changed to a pseudocubic when Cu was added. For undoped Cu samples, the sintering temperature (Ts) for sufficient densification was 1160 °C. However, Ts was reduced to 1090–1120 °C for Cu-added specimens. Field emission scanning electron microscopy (FE-SEM) showed a uniform and dense grain morphology for all samples. The maximum dielectric constant temperature (Tm) was decreased with the doping concentration of Cu and applied frequency. The strain was increased with Cu concentration and had the maximum value of 500 pm/V for the sample x = 0.02 with symmetric and slim strain loops.

[1]  Xinhong Cheng,et al.  Interfacial modification mechanism of ALD-SiO2/4H-SiC heterojunction by synergistic nitrogen–oxygen-atmosphere RTA , 2022, Applied Physics A.

[2]  Amir Ullah,et al.  Relaxor ferroelectricity and low microwave dielectric permittivity of Sr(1-)Ce Ti(1-2/3y)MgyO3 ceramics , 2022, Ceramics International.

[3]  I. Kim,et al.  Dielectric, Ferroelectric and Strain Properties of (Bi0.5Na0.5)0.935Ba0.065Ti1−x(Al0.5Nb0.5)xO3 Lead-free Piezoelectric Ceramics , 2020, Journal of the Korean Physical Society.

[4]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[5]  N. Novak,et al.  Unconventional high permittivity and relaxor like anomaly in (Sr, Ce, Pr)TiO3 solid solution , 2019, Journal of Materials Science: Materials in Electronics.

[6]  I. Kim,et al.  Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning , 2018 .

[7]  A. Ullah,et al.  Dielectric, ferroelectric and piezoelectric properties of (1-x)(Bi0.5Na0.5)0.935Ba0.065Ti -x(LiSbO3) solid solutions , 2018 .

[8]  Jae-Shin Lee,et al.  Effect of Lanthanum Doping on Ferroelectric and Strain Properties of 0.96Bi1/2(Na0.84K0.16)1/2TiO3-0.04SrTiO3 Lead-Free Ceramics , 2016, Journal of Electronic Materials.

[9]  I. Kim,et al.  Large Electromechanical Response in Lead‐Free La‐Doped BNKT–BST Piezoelectric Ceramics , 2014 .

[10]  J. S. Lee,et al.  Electromechanical and microstructural study of (1-x) Bi0.5 (Na0.40 K0.10) TiO3-x (Ba0.70 Sr0.30) TiO3 lead-free piezoelectric ceramics , 2014, Journal of Electroceramics.

[11]  Xiaohong Zhu,et al.  Microstructure and electrical properties of (Na0.5K0.5)1−2xMgxNbO3–Bi0.5Na0.5TiO3 lead-free piezoelectric ceramics , 2014 .

[12]  Mark Hoffman,et al.  Tailoring the Piezoelectric and Relaxor Properties of (Bi1/2Na1/2)TiO3–BaTiO3 via Zirconium Doping , 2013 .

[13]  I. Kim,et al.  Large strain under a low electric field in lead-free bismuth-based piezoelectrics , 2013 .

[14]  S. K. Rout,et al.  Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3−x[SrTiO3] composites ceramics , 2012, Applied Physics A.

[15]  S. K. Rout,et al.  Structure, microstructure and dielectric properties of 100−x(Bi0.5Na0.5)TiO3−x[SrTiO3] composites ceramics , 2012, Applied Physics A.

[16]  Jianguo Zhu,et al.  Enhanced d33 value of Bi0.5Na0.5TiO3–(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics , 2012 .

[17]  Hyoung-Su Han,et al.  Strain enhancement of lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics by Sn doping , 2012 .

[18]  D. Suvorov,et al.  Ferroelectric Bi(Na,K)TiO3-based materials for lead-free piezoelectrics , 2012 .

[19]  H. Funakubo,et al.  Preparation and Characteristics of Bi0.5Na0.5TiO3 Single‐Crystalline Films by a Solid‐State Process , 2011 .

[20]  Feifei Wang,et al.  Large electrostrictive strain in lead-free Bi0.5Na0.5TiO3–BaTiO3–KNbO3 ceramics , 2011 .

[21]  Xinman Chen,et al.  Phase diagram and electric properties of the (Mn, K)-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free ceramics , 2011, Journal of Materials Science.

[22]  R. Chatterjee,et al.  Structural, electrical, and strain properties of stoichiometric 1−x−y(Bi0.5Na0.5)TiO3−x(Bi0.5K0.5TiO3)−y(Na0.5K0.5)NbO3 solid solutions , 2011 .

[23]  K. Kwok,et al.  Structure and piezoelectric properties of new (Bi0.5Na0.5)1−x−yBax(Yb0.5Na0.5)yTiO3 lead-free ceramics , 2010 .

[24]  Q. Yin,et al.  Piezoelectric and dielectric properties of Sm2O3-doped 0.82Bi0.5Na0.5TiO3-0.18Bi0.5K0.5TiO3 ceramics , 2010 .

[25]  Rüdiger-A. Eichel,et al.  RECENT DEVELOPMENTS AND FUTURE PERSPECTIVES OF LEAD-FREE FERROELECTRICS , 2010 .

[26]  E. Chavez,et al.  Preparation of SrTiO3 nanomaterial by a sol–gel-hydrothermal method , 2010 .

[27]  Prasanta Kumar Panda,et al.  Review: environmental friendly lead-free piezoelectric materials , 2009, Journal of Materials Science.

[28]  Jianguo Zhu,et al.  Structural and electrical properties of Cu-doped (K0.5Na0.5)NbO3-MgTiO3 lead-free ceramics , 2009 .

[29]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[30]  Y. Noguchi,et al.  Large electric-field-induced strain in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 solid solution single crystals , 2008 .

[31]  Hajime Nagata,et al.  Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics , 2008 .

[32]  V. Krstić,et al.  Microstructure and properties of lead-free (Bi1/2Na1/2)TiO3 based piezoelectric ceramics doped with different cations , 2007 .

[33]  N. Setter,et al.  Lead Free Piezoelectric Materials , 2004 .

[34]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .