The Secant Conjecture in the Real Schubert Calculus

We formulate the secant conjecture, which is a generalization of the Shapiro conjecture for Grassmannians. It asserts that an intersection of Schubert varieties in a Grassmannian is transverse with all points real if the flags defining the Schubert varieties are secant along disjoint intervals of a rational normal curve. We present theoretical evidence for this conjecture as well as computational evidence obtained in over one terahertz-year of computing, and we discuss some of the phenomena we observed in our data.

[1]  Andrei Gabrielov,et al.  Elementary proof of the B. and M. Shapiro conjecture for rational functions , 2005 .

[2]  S. Smale Newton’s Method Estimates from Data at One Point , 1986 .

[3]  Frank Sottile,et al.  Enumerative geometry for the real Grassmannian of lines in projective space , 1997 .

[4]  Michael Joswig,et al.  Products of foldable triangulations , 2005 .

[5]  Frank Sottile,et al.  ALGORITHM XXX: ALPHACERTIFIED: CERTIFYING SOLUTIONS TO POLYNOMIAL SYSTEMS , 2011 .

[6]  Frank Sottile,et al.  alphaCertified: certifying solutions to polynomial systems , 2010, ArXiv.

[7]  Richard E. Ewing,et al.  "The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics" , 1986 .

[8]  Chiaki Itoh,et al.  Where Is the Σb , 1992 .

[9]  List Price,et al.  Real solutions to equations from geometry , 2013 .

[10]  E. Mukhin,et al.  Schubert calculus and representations of the general linear group , 2007, 0711.4079.

[11]  William Fulton,et al.  Schubert varieties and degeneracy loci , 1998 .

[12]  Eugenii Shustin,et al.  A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces , 2006 .

[13]  G. Mikhalkin Enumerative tropical algebraic geometry , 2003 .

[14]  Andrei Gabrielov,et al.  Degrees of Real Wronski Maps , 2002, Discret. Comput. Geom..

[15]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[16]  A. Odlyzko On the distribution of spacings between zeros of the zeta function , 1987 .

[17]  Frank Sottile Enumerative geometry for real varieties , 1996 .

[18]  Jan Verschelde,et al.  Numerical Evidence for a Conjecture in Real Algebraic Geometry , 2000, Exp. Math..

[19]  Frank Sottile,et al.  Frontiers of reality in Schubert calculus , 2009 .

[20]  A. Eremenko,et al.  Rational functions and real Schubert calculus , 2004, math/0407408.

[21]  Eugenii Shustin,et al.  Logarithmic equivalence of Welschinger and Gromov-Witten invariants , 2004 .

[22]  Petter Brändén,et al.  Notions of positivity and the geometry of polynomials , 2011 .

[23]  Steven L. Kleiman,et al.  The transversality of a general translate , 1974 .

[24]  Frank Sottile,et al.  Experimentation and Conjectures in the Real Schubert Calculus for Flag Manifolds , 2006, Exp. Math..

[25]  Frank Sottile,et al.  Bounds on the Number of Real Solutions to Polynomial Equations , 2007 .

[26]  E. Mukhin,et al.  The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz , 2005 .

[27]  Frank Sottile,et al.  Experimentation at the Frontiers of Reality in Schubert Calculus , 2009, 0906.2497.

[28]  A. Eremenko,et al.  Rational functions with real critical points and the B. and M. Shapiro conjecture in real enumerative geometry , 2004, math/0405196.

[29]  Ravi Vakil Schubert induction , 2003 .

[30]  G. Mikhalkin Enumerative tropical algebraic geometry in R^2 , 2003, math/0312530.

[31]  Andrei Gabrielov,et al.  Some Lower Bounds in the B. and M. Shapiro Conjecture for Flag Varieties , 2010, Discret. Comput. Geom..

[32]  Kevin Purbhoo Reality and transversality for Schubert calculus in OG (n, 2n+1) , 2009 .

[33]  Frank Sottile,et al.  Lower bounds for real solutions to sparse polynomial systems , 2004 .

[34]  D. Lyth,et al.  The shape of the ρ(ππ → ππ andee → ππ) , 1971 .

[35]  Jonathan D. Hauenstein,et al.  Software for numerical algebraic geometry: a paradigm and progress towards its implementation , 2008 .

[36]  Joachim Rosenthal,et al.  Some remarks on real and complex output feedback , 1997 .

[37]  Veerle Ledoux,et al.  Introductory Schubert calculus , 2010 .

[38]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[39]  Alexander Varchenko,et al.  On reality property of Wronski maps , 2007, 0710.5856.

[40]  Jean-Yves Welschinger,et al.  Invariants of real rational symplectic 4-manifolds and lower bounds in real enumerative geometry , 2003 .

[41]  Moritz Beckmann,et al.  Young tableaux , 2007 .

[42]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[43]  Frank Sottile,et al.  Some real and unreal enumerative geometry for flag manifolds. , 2000, math/0002207.

[44]  Логарифмическая эквивалентность инвариантов Вельшенже и Громова - Виттена@@@Logarithmic equivalence of Welschinger and Gromov - Witten invariants , 2004 .

[45]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[46]  Andrew J. Sommese,et al.  The numerical solution of systems of polynomials - arising in engineering and science , 2005 .

[47]  Eugenii Shustin,et al.  Welschinger invariant and enumeration of real rational curves , 2003 .

[48]  Frank Sottile,et al.  Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro , 1999, Exp. Math..