Original Contribution: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function

[1]  A. Pinkus,et al.  Fundamentality of Ridge Functions , 1993 .

[2]  C. Chui,et al.  Approximation by ridge functions and neural networks with one hidden layer , 1992 .

[3]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[4]  Halbert White,et al.  Approximating and learning unknown mappings using multilayer feedforward networks with bounded weights , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[5]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[6]  Geoffrey E. Hinton Connectionist Learning Procedures , 1989, Artif. Intell..

[7]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[8]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[9]  H. White,et al.  There exists a neural network that does not make avoidable mistakes , 1988, IEEE 1988 International Conference on Neural Networks.

[10]  T. Teichmann,et al.  Generalized Functions and Partial Differential Equations , 1964 .

[11]  L. Schwartz Theorie Generale des Fonctions Moyenne-Periodiques , 1947 .

[12]  R. Hecht-Nielsen,et al.  Theory of the Back Propagation Neural Network , 1989 .

[13]  Kurt Hornik,et al.  FEED FORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS , 1989 .

[14]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[15]  C. Micchelli,et al.  Some remarks on ridge functions , 1987 .

[16]  G. Bachman Functional Analysis , 1966 .