Maximal and minimal realizations of reaction kinetic systems: computation and properties

This paper presents new results about the optimization based generation of chemical reaction networks (CRNs) of higher deficiency. Firstly, it is shown that the graph structure of the realization containing the maximal number of reactions is unique if the set of possible complexes is fixed. Secondly, a mixed integer programming based numerical procedure is given for computing a realization containing the minimal/maximal number of complexes. Moreover, the linear inequalities corresponding to full reversibility of the CRN realization are also described. The theoretical results are illustrated on meaningful examples.

[1]  Gheorghe Craciun,et al.  Identifiability of chemical reaction networks , 2008 .

[2]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[3]  Heng Liang,et al.  Computing the Permanental Polynomial of C60 in Parallel , 2008 .

[4]  Julio R. Banga,et al.  Optimization in computational systems biology , 2008, BMC Systems Biology.

[5]  Christodoulos A. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Comput. Chem. Eng..

[6]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[7]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[8]  Brian W. Kernighan,et al.  AMPL: A Modeling Language for Mathematical Programming , 1993 .

[9]  Nikola Samardzija,et al.  Nonlinear chemical kinetic schemes derived from mechanical and electrical dynamical systems , 1989 .

[10]  David Angeli,et al.  A tutorial on Chemical Reaction Networks dynamics , 2009, 2009 European Control Conference (ECC).

[11]  Alexander N Gorban,et al.  Invariant grids for reaction kinetics , 2003 .

[12]  Péter Érdi,et al.  Mathematical models of chemical reactions , 1989 .

[13]  G. Szederkényi Computing sparse and dense realizations of reaction kinetic systems , 2010 .

[14]  Gábor Szederkényi,et al.  Local dissipative Hamiltonian description of reversible reaction networks , 2008, Syst. Control. Lett..

[15]  R.,et al.  RELATION BETWEEN MILP MODELLING AND LOGICAL INFERENCE FOR CHEMICAL PROCESS SYNTHESIS , 2001 .

[16]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[17]  Changiz Eslahchi,et al.  Enhanced Evolutionary and Heuristic Algorithms for Haplotype Reconstruction Problem Using Minimum Error Correction Model , 2009 .

[18]  Eduardo D. Sontag Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction , 2001, IEEE Trans. Autom. Control..

[19]  Benjamin Weitz,et al.  An inverse problem in reaction kinetics , 2011 .

[20]  Péter Érdi,et al.  Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models , 1989 .

[21]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[22]  S. Bhat,et al.  Modeling and analysis of mass-action kinetics , 2009, IEEE Control Systems.

[23]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[24]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[25]  Philippe Bogaerts,et al.  Dynamic modeling of complex biological systems: a link between metabolic and macroscopic description. , 2005, Mathematical biosciences.

[26]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[27]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—II. Multiple steady states for networks of deficiency one , 1988 .