暂无分享,去创建一个
[1] Anthony T. Chronopoulos,et al. Parallel Iterative S-Step Methods for Unsymmetric Linear Systems , 1996, Parallel Comput..
[2] Qiang Ye,et al. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..
[3] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[4] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[5] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[6] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[7] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[8] Anne Greenbaum,et al. Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..
[9] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[10] Anthony T. Chronopoulos,et al. Block s‐step Krylov iterative methods , 2010, Numer. Linear Algebra Appl..
[11] J. Dongarra,et al. HPCG Benchmark: a New Metric for Ranking High Performance Computing Systems∗ , 2015 .
[12] Jocelyne Erhel,et al. A parallel GMRES version for general sparse matrices. , 1995 .
[13] Zdenek Strakos. Effectivity and optimizing of algorithms and programs on the host-computer/array-processor system , 1987, Parallel Comput..
[14] William Gropp,et al. Non-blocking Preconditioned Conjugate Gradient Methods for Extreme-scale Computing. , 2015 .
[15] A. Greenbaum. Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .
[16] E. Sturler. A PARALLEL VARIANT OF GMRES(m) , 1991 .
[17] John Shalf,et al. The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..
[18] Gerard L. G. Sleijpen,et al. Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[19] James Demmel,et al. Avoiding Communication in Nonsymmetric Lanczos-Based Krylov Subspace Methods , 2013, SIAM J. Sci. Comput..
[20] G. Meurant. Computer Solution of Large Linear Systems , 1999 .
[21] Z. Strakos,et al. Error Estimation in Preconditioned Conjugate Gradients , 2005 .
[22] Gerard L. G. Sleijpen,et al. Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.
[23] Wim Vanroose,et al. Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..
[24] C. Paige. Computational variants of the Lanczos method for the eigenproblem , 1972 .
[25] E. F. DAzevedo,et al. Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors , 1992 .
[26] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[27] M. Rozložník,et al. ON THE NUMERICAL STABILITY ANALYSIS OF PIPELINED KRYLOV SUBSPACE METHODS , 2016 .
[28] James Demmel,et al. A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..
[29] R. Pavani,et al. Parallel Numerical Linear Algebra , 1995, PDP.
[30] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[31] H. V. der. Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000 .
[32] Sandia Report,et al. Toward a New Metric for Ranking High Performance Computing Systems , 2013 .
[33] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[34] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[35] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[36] C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem , 1980 .
[37] C. Paige. Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .
[38] Wim Vanroose,et al. The communication-hiding pipelined BiCGstab method for the parallel solution of large unsymmetric linear systems , 2016, Parallel Comput..
[39] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[40] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[41] Wim Vanroose,et al. Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..
[42] Zdenek Strakos,et al. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.
[43] G. Meurant,et al. The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.