Defining stable phases of open quantum systems

The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability.

[1]  S. Lieu,et al.  Dissipative phase transitions and passive error correction , 2023, 2307.09512.

[2]  S. Ryu,et al.  Lieb-Schultz-Mattis Theorem in Open Quantum Systems. , 2023, Physical review letters.

[3]  P. Ribeiro,et al.  Symmetry Classification of Many-Body Lindbladians: Tenfold Way and Beyond , 2022, Physical Review X.

[4]  L. Bishop,et al.  Exploiting Qubit Reuse through Mid-circuit Measurement and Reset , 2022, 2211.01925.

[5]  S. Ryu,et al.  Dynamical quantum phase transitions in Sachdev-Ye-Kitaev Lindbladians , 2022, Physical Review B.

[6]  Yan-Feng Chen,et al.  A review on non-Hermitian skin effect , 2022, Advances in Physics: X.

[7]  P. Ribeiro,et al.  Lindbladian dissipation of strongly-correlated quantum matter , 2021, Physical Review Research.

[8]  Holonomy , 2021, Visual Differential Geometry and Forms.

[9]  M. Znidaric,et al.  Fastest Local Entanglement Scrambler, Multistage Thermalization, and a Non-Hermitian Phantom , 2021, Physical Review X.

[10]  T. Prosen,et al.  Spectral transitions and universal steady states in random Kraus maps and circuits , 2020, Physical Review B.

[11]  Pseudospectra of matrices , 2020, Spectra and Pseudospectra.

[12]  C. Figgatt,et al.  Demonstration of the trapped-ion quantum CCD computer architecture , 2020, Nature.

[13]  T. Prosen,et al.  Complex Spacing Ratios: A Signature of Dissipative Quantum Chaos , 2019, Physical Review X.

[14]  T. Prosen,et al.  Spectral and steady-state properties of random Liouvillians , 2019, Journal of Physics A: Mathematical and Theoretical.

[15]  T. Can Random Lindblad dynamics , 2019, Journal of Physics A: Mathematical and Theoretical.

[16]  S. Gopalakrishnan,et al.  Spectral Gaps and Midgap States in Random Quantum Master Equations. , 2019, Physical review letters.

[17]  Dariusz Chruściński,et al.  Universal Spectra of Random Lindblad Operators. , 2018, Physical review letters.

[18]  R. Nandkishore,et al.  Fractons , 2018, Annual Review of Condensed Matter Physics.

[19]  Zhong Wang,et al.  Edge States and Topological Invariants of Non-Hermitian Systems. , 2018, Physical review letters.

[20]  Xiao-Gang Wen,et al.  Colloquium : Zoo of quantum-topological phases of matter , 2016, 1610.03911.

[21]  S. Diehl,et al.  Quantum dynamical field theory for nonequilibrium phase transitions in driven open systems , 2016, 1606.00452.

[22]  M. Buchhold,et al.  Absorbing State Phase Transition with Competing Quantum and Classical Fluctuations. , 2016, Physical review letters.

[23]  T. Cubitt,et al.  Rapid mixing and stability of quantum dissipative systems , 2014, 1409.7809.

[24]  Lise Ponselet,et al.  Phase transitions in probabilistic cellular automata , 2013, 1312.3612.

[25]  J. Toner,et al.  Two-dimensional superfluidity of exciton-polaritons requires strong anisotropy , 2013, 1311.0876.

[26]  Mikhail D Lukin,et al.  Unconventional magnetism via optical pumping of interacting spin systems. , 2013, Physical review letters.

[27]  David Perez-Garcia,et al.  Stability of Local Quantum Dissipative Systems , 2013, 1303.4744.

[28]  F. Brennecke,et al.  Cold atoms in cavity-generated dynamical optical potentials , 2012, 1210.0013.

[29]  J. Cirac,et al.  Dissipative phase transition in a central spin system , 2012, 1205.3341.

[30]  J. P. Garrahan,et al.  Dynamical phases and intermittency of the dissipative quantum Ising model , 2011, 1112.4273.

[31]  Lise Ponselet,et al.  Exponential Decay of Correlations for Strongly Coupled Toom Probabilistic Cellular Automata , 2011, 1110.1540.

[32]  Bruno Nachtergaele,et al.  Lieb-Robinson Bounds and Existence of the Thermodynamic Limit for a Class of Irreversible Quantum Dynamics , 2011, 1103.1122.

[33]  N. Berloff,et al.  Exciton–polariton condensation , 2011 .

[34]  Bruno Nachtergaele,et al.  Automorphic Equivalence within Gapped Phases of Quantum Lattice Systems , 2011, 1102.0842.

[35]  Xiao-Gang Wen,et al.  Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order , 2010, 1004.3835.

[36]  David Poulin,et al.  Lieb-Robinson bound and locality for general markovian quantum dynamics. , 2010, Physical review letters.

[37]  Sergey Bravyi,et al.  Topological quantum order: Stability under local perturbations , 2010, 1001.0344.

[38]  Ion Nechita,et al.  Random Quantum Channels I: Graphical Calculus and the Bell State Phenomenon , 2009, 0905.2313.

[39]  M. Hastings Quantum belief propagation: An algorithm for thermal quantum systems , 2007, 0706.4094.

[40]  P. Littlewood,et al.  Mean-field theory and fluctuation spectrum of a pumped decaying Bose-Fermi system across the quantum condensation transition , 2006, cond-mat/0611456.

[41]  F. Essler,et al.  Bethe ansatz solution of the asymmetric exclusion process with open boundaries. , 2005, Physical review letters.

[42]  M. Hastings,et al.  Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance , 2005, cond-mat/0503554.

[43]  M. Hastings,et al.  Locality in quantum and Markov dynamics on lattices and networks. , 2004, Physical review letters.

[44]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[45]  R. Fernández,et al.  Non-Gibbsianness of the invariant measures of non-reversible cellular automata with totally asymmetric noise , 2001, math-ph/0101014.

[46]  J. Chalker,et al.  EIGENVECTOR STATISTICS IN NON-HERMITIAN RANDOM MATRIX ENSEMBLES , 1998, cond-mat/9809090.

[47]  Peter Gacs,et al.  A new version of Toom's proof , 1995, ArXiv.

[48]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[49]  Barry Simon,et al.  Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase , 1983 .

[50]  J. R. G. Mendonça Monte Carlo investigation of the critical behavior of Stavskaya's probabilistic cellular automaton. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[52]  J. Harrington,et al.  Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes , 2004 .

[53]  Mark Ainsworth,et al.  The graduate student's guide to numerical analysis '98 : lecture notes from the VIII EPSRC Summer School in Numerical Analysis , 1999 .

[54]  Kihong Park,et al.  Ergodicity and mixing rate of one-dimensional cellular automata , 1997 .

[55]  I. Miyazaki,et al.  AND T , 2022 .