Diffusion processes in thin tubes and their limits on graphs

The present paper is concerned with diffusion processes running on tubular domains with conditions on nonreaching the boundary, respectively, reflecting at the boundary, and corresponding processes in the limit where the thin tubular domains are shrinking to graphs. The methods we use are probabilistic ones. For shrinking, we use big potentials, respectively, reflection on the boundary of tubes. We show that there exists a unique limit process, and we characterize the limit process by a second-order differential generator acting on functions defined on the limit graph, with Kirchhoff boundary conditions at the vertices.

[1]  S. Albeverio,et al.  Small noise asymptotic expansions for stochastic PDE's, I. The case of a dissipative polynomially bounded non linearity , 2011 .

[2]  G. Dell'Antonio,et al.  Effective Schrödinger dynamics on ε-thin Dirichlet waveguides via quantum graphs: I. Star-shaped graphs , 2010, 1004.4750.

[3]  Claudio Cacciapuoti,et al.  Graph-like models for thin waveguides with Robin boundary conditions , 2008, Asymptot. Anal..

[4]  K. Spiliopoulos Wiener Process with Reflection in Non-Smooth Narrow Tubes , 2009, 1004.2991.

[5]  S. Problems Sturm-Liouville Eigenvalue Problems , 2009 .

[6]  Konstantinos Spiliopoulos,et al.  Reaction-diffusion equations with nonlinear boundary conditions in narrow domains , 2010, Asymptot. Anal..

[7]  E. Mastrogiacomo,et al.  Large deviation principle for stochastic FitzHugh-Nagumo equations on networks , 2008 .

[8]  Daniel Grieser,et al.  Thin tubes in mathematical physics, global analysis and spectral geometry , 2008, 0802.2687.

[9]  Pavel Kurasov Schrödinger operators on graphs and geometry I: Essentially bounded potentials , 2008 .

[10]  Peter Kuchment,et al.  Analysis on graphs and its applications , 2008 .

[11]  Delio Mugnolo A Variational Approach to Strongly Damped Wave Equations , 2009, 0903.2599.

[12]  Stefano Cardanobile,et al.  Well-posedness and symmetries of strongly coupled network equations , 2007, 0709.2080.

[13]  P. Exner,et al.  Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide , 2007, 0704.2912.

[14]  Asymptotics of Time Harmonic Solutions to a Thin Ferroelectric Model , 2007 .

[15]  Delio Mugnolo,et al.  Variational and Semigroup Methods for Waves and Diffusion in Networks , 2007, 1209.1495.

[16]  Delio Mugnolo,et al.  Gaussian estimates for a heat equation on a network , 2006, Networks Heterog. Media.

[17]  S. Albeverio,et al.  Coupling in the singular limit of thin quantum waveguides , 2006, math-ph/0611059.

[18]  B. Vainberg,et al.  Scattering Solutions in Networks of Thin Fibers: Small Diameter Asymptotics , 2006, math-ph/0609021.

[19]  P. Kuchment,et al.  Quantum Graphs and Their Applications , 2006 .

[20]  G. Dell'Antonio,et al.  Quantum graphs as holonomic constraints , 2006, math-ph/0603044.

[21]  R. Schrader,et al.  Laplacians on Metric Graphs: Eigenvalues, Resolvents and Semigroups , 2006, math-ph/0601041.

[22]  R. Tumulka The Analogue of Bohm-Bell Processes on a Graph , 2005, quant-ph/0508109.

[23]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[24]  Olaf Post Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case , 2005 .

[25]  P. Kuchment Quantum graphs: II. Some spectral properties of quantum and combinatorial graphs , 2004, math-ph/0411003.

[26]  O. Post,et al.  Convergence of spectra of graph-like thin manifolds , 2003, math-ph/0312028.

[27]  Mark Freidlin,et al.  Diffusion processes on an open book and the averaging principle , 2004 .

[28]  P. Kuchment Quantum graphs , 2004 .

[29]  P. Kuchment Quantum graphs: I. Some basic structures , 2004 .

[30]  Semilinear Elliptic Equations on Thin Network-Shaped Domains with Variable Thickness , 2002 .

[31]  Jacob Rubinstein,et al.  Variational Problems¶on Multiply Connected Thin Strips I:¶Basic Estimates and Convergence¶of the Laplacian Spectrum , 2001 .

[32]  Peter Kuchment,et al.  Convergence of Spectra of Mesoscopic Systems Collapsing onto a Graph , 2001 .

[33]  J. Rubinstein,et al.  Variational problems on multiply connected thin strips III: Integration of the Ginzburg-Landau equations over graphs , 2001 .

[34]  Serge Nicaise,et al.  Partial Differential Equations On Multistructures , 2001 .

[35]  Eiji Yanagida,et al.  Stability of nonconstant steady states in reaction-diffusion systems on graphs , 2001 .

[36]  Yoshimi Saito Convergence of the Neumann Laplacian on shrinking domains , 2001 .

[37]  Geneviève Raugel,et al.  Dynamics of partial differential equations on thin domains , 1995 .

[38]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[39]  Mark Freidlin,et al.  Diffusion Processes on Graphs and the Averaging Principle , 1993 .

[40]  M. Cranston Gradient estimates on manifolds using coupling , 1991 .

[41]  Petr Šeba,et al.  Bound states in curved quantum waveguides , 1989 .

[42]  Petr Šeba,et al.  Free quantum motion on a branching graph , 1989 .

[43]  J. Below Sturm-Liouville eigenvalue problems on networks , 1988 .

[44]  Sergio Albeverio,et al.  Solvable Models in Quantum Mechanics , 1988 .

[45]  L. Rogers,et al.  Coupling of Multidimensional Diffusions by Reflection , 1986 .

[46]  V. V. Zhikov,et al.  Stabilization of the solution of the Cauchy problem for parabolic equations , 1985 .

[47]  Robert L. Foote,et al.  Regularity of the distance function , 1984 .

[48]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[49]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[50]  G. Lumer Connecting of local operators and evolution equations on networks , 1980 .

[51]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[52]  S. Varadhan,et al.  Diffusion processes with boundary conditions , 1971 .

[53]  R. Khas'minskii Ergodic Properties of Recurrent Diffusion Processes and Stabilization of the Solution to the Cauchy Problem for Parabolic Equations , 1960 .

[54]  J. Doob Stochastic processes , 1953 .