Boundary controllability of the finite-difference space semi-discretizations of the beam equation
暂无分享,去创建一个
[1] J. Strikwerda. Finite Difference Schemes and Partial Differential Equations , 1989 .
[2] Enrique Zuazua,et al. Boundary Controllability of a Linear Hybrid SystemArising in the Control of Noise , 1997 .
[3] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[4] E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square , 1999 .
[5] A. Haraux,et al. Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire , 1989 .
[6] G. Lebeau. Contrôle de l'équation de Schrödinger , 1992 .
[7] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[8] V. Komornik. Exact Controllability and Stabilization: The Multiplier Method , 1995 .
[9] Enrique Zuazua,et al. Boundary obeservability for the space semi-discretization for the 1-d wave equation , 1999 .
[10] A. Ingham. Some trigonometrical inequalities with applications to the theory of series , 1936 .
[11] Anne Lohrli. Chapman and Hall , 1985 .
[12] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[13] Exact controllability of the Boussinesq equation on a bounded domain , 2003 .
[14] Sorin Micu,et al. Uniform boundary controllability of a semi-discrete 1-D wave equation , 2002, Numerische Mathematik.
[15] Jacques-Louis Lions. Contrôlabilite exacte et homogénéisation (I) , 1988 .
[16] J. Lions,et al. Problèmes aux limites non homogènes et applications , 1968 .