An application of Gappy POD

An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.

[1]  George E. Karniadakis,et al.  Gappy data: To Krig or not to Krig? , 2006, J. Comput. Phys..

[2]  Steve Wereley,et al.  A correlation-based central difference image correction (CDIC) method and application in a four-roll mill flow PIV measurement , 2003 .

[3]  Karen Willcox,et al.  Unsteady Flow Sensing and Estimation via the Gappy Proper Orthogonal Decomposition , 2004 .

[4]  Daniele Venturi,et al.  Gappy data and reconstruction procedures for flow past a cylinder , 2004, Journal of Fluid Mechanics.

[5]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[6]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[7]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[8]  Steven T. Wereley,et al.  A correlation-based continuous window-shift technique to reduce the peak-locking effect in digital PIV image evaluation , 2002 .

[9]  K. Willcox,et al.  Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition , 2004 .

[10]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1987 .

[11]  L. Ukeiley,et al.  Estimation of Time Dependent Flow Properties in an Open Cavity , 2005 .

[12]  H. Saunders Literature Review : RANDOM DATA: ANALYSIS AND MEASUREMENT PROCEDURES J. S. Bendat and A.G. Piersol Wiley-Interscience, New York, N. Y. (1971) , 1974 .

[13]  B. S. Garbow,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[14]  Frederick Stern,et al.  Towing tank PIV measurement system, data and uncertainty assessment for DTMB Model 5512 , 2001 .

[15]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[16]  John M. Seiner,et al.  A new anechoic chamber design for testing high-temperature jet flows , 2001 .

[17]  W. G. Steele,et al.  Engineering application of experimental uncertainty analysis , 1995 .

[18]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .