MNO--PQRS

In both cyclic and finite-horizon contexts, piecewise-constant rate functions are commonly encountered in models with nonhomogeneous Poisson processes. We develop an algorithm, with no user-specified parameters, that returns a smoother rate function that maintains the expected number of arrivals. The algorithm proceeds in two steps: PQRS (Piecewise-Quadratic Rate Smoothing) returns a continuous and differentiable piecewise-quadratic function without regard to negativity. If negative rates occur, then MNO (Max Nonnegativity Ordering) returns the maximum of zero and another piecewise-quadratic function. MNO maintains continuity of rates and first derivatives, but with some exceptions. Our analysis allows fitting the MNO--PQRS function to require storage complexity of the order of the number of intervals and computational complexity of the order of the number of intervals squared. MNO--PQRS can be used as a stand-alone routine, or as an endgame for the authors’ earlier algorithm, I-SMOOTH.

[1]  Lawrence M. Leemis,et al.  Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process from Overlapping Realizations , 2000 .

[2]  Bruce W. Schmeiser,et al.  The MNO-PQRS poisson point process: Generating the next event time , 2015, 2015 Winter Simulation Conference (WSC).

[3]  Huifen Chen,et al.  I-SMOOTH: Iteratively Smoothing Mean-Constrained and Nonnegative Piecewise-Constant Functions , 2013, INFORMS J. Comput..

[4]  James R. Wilson,et al.  Least squares estimation of nonhomogeneous poisson processes , 2000 .

[5]  Bruce W. Schmeiser,et al.  I-SMOOTH: Iteratively smoothing piecewise-constant Poisson-process rate functions , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[6]  K. Miller On the Inverse of the Sum of Matrices , 1981 .

[7]  S. Buckley,et al.  SCALING AND MODELING OF CALL CENTER ARRIVALS , 2014 .

[8]  Stephen D. Roberts,et al.  A time-varying Poisson arrival process generator , 1984 .

[9]  Pierre L'Ecuyer,et al.  Modeling Daily Arrivals to a Telephone Call Center , 2003, Manag. Sci..

[10]  L. Leemis,et al.  Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process from Overlapping Realizations , 2000 .

[11]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[12]  Lawrence M. Leemis,et al.  TECHNICAL NOTE: Nonparametric estimation and variate generation for a nonhomogeneous Poisson process from event count data , 2004 .

[13]  Ran Liu Modeling and Simulation of Nonstationary Non-Poisson Processes. , 2013 .

[14]  Bruce W. Schmeiser,et al.  Piecewise-quadratic rate smoothing: The cyclic context , 2014, Proceedings of the Winter Simulation Conference 2014.

[15]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[16]  Lawrence Leemis,et al.  Simulating Multivariate Nonhomogeneous Poisson Processes Using Projections , 2012, TOMC.

[17]  T. De Mazancourt,et al.  The inverse of a block-circulant matrix , 1983 .

[18]  James R. Wilson,et al.  Modeling and simulating Poisson processes having trends or nontrigonometric cyclic effects , 2001, Eur. J. Oper. Res..

[19]  Lawrence Leemis,et al.  A continuous piecewise-linear NHPP intensity function estimator , 2014, Proceedings of the Winter Simulation Conference 2014.

[20]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[21]  Bruce W. Schmeiser Random Variate Generation: A Survey. , 1980 .