A total-variation surface energy model for thin films of martensitic crystals

We rigorously derive a thin film limit for martensitic crystals that utilizes the total variation of the deformation gradient to model the energy on surfaces separating regions of different variants. We find that the deformation for an infinitesimally thin film minimizes a two-dimensional energy.

[1]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[2]  M. Luskin,et al.  On the numerical modeling of deformations of pressurized martensitic thin films , 2001 .

[3]  I. Fonseca Phase transitions of elastic solid materials , 1989 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  Robert V. Kohn,et al.  Relaxation and regularization of nonconvex variational problems , 1992 .

[6]  Mitchell Luskin,et al.  A computational model for the indentation and phase transformation of a martensitic thin film , 2002 .

[7]  E. Makino,et al.  Thin Film Shape Memory Alloy Microactuators , 2001 .

[8]  Robert V. Kohn,et al.  Surface energy and microstructure in coherent phase transitions , 1994 .

[9]  R. James,et al.  A theory of thin films of martensitic materials with applications to microactuators , 1999 .

[10]  Mitchell Luskin,et al.  The Simply Laminated Microstructure in Martensitic Crystals that Undergo a Cubic‐to‐Orthorhombic Phase Transformation , 1999 .

[11]  G. Buttazzo,et al.  A variational definition of the strain energy for an elastic string , 1991 .

[12]  B. Li,et al.  Finite Element Analysis of Microstructure for the Cubic to Tetragonal Transformation , 1998 .

[13]  M. A. Northrup,et al.  Thin Film Shape Memory Alloy Microactuators , 1996, Microelectromechanical Systems (MEMS).

[14]  M. Luskin,et al.  Stability of microstructure for tetragonal to monoclinic martensitic transformations , 2000 .

[15]  Mitchell Luskin,et al.  On the computation of crystalline microstructure , 1996, Acta Numerica.

[16]  I. Fonseca,et al.  3D-2D asymptotic analysis of an optimal design problem for thin films , 1998 .

[17]  R. Kohn,et al.  Branching of twins near an austenite—twinned-martensite interface , 1992 .

[18]  Sisto Baldo,et al.  Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity , 1994 .

[19]  L. Evans Measure theory and fine properties of functions , 1992 .

[20]  C. Palmstrøm,et al.  Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs , 1999 .

[21]  A. Raoult,et al.  The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity , 1995 .

[22]  Stefan Müller,et al.  Singular perturbations as a selection criterion for periodic minimizing sequences , 1993 .

[23]  J. Ball,et al.  Fine phase mixtures as minimizers of energy , 1987 .

[24]  Mitchell Luskin,et al.  Approximation of a laminated microstructure for a rotationally invariant, double well energy density , 1996 .

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.