A sparse control approach to optimal sensor placement in PDE-constrained parameter estimation problems
暂无分享,去创建一个
Boris Vexler | Konstantin Pieper | Daniel Walter | Ira Neitzel | B. Vexler | Ira Neitzel | K. Pieper | Daniel Walter | Konstantin Pieper
[1] J. Dunn. Rates of convergence for conditional gradient algorithms near singular and nonsingular extremals , 1978 .
[2] R. Cooke. Real and Complex Analysis , 2011 .
[3] Georg Stadler,et al. Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..
[4] E. Haber,et al. Numerical methods for experimental design of large-scale linear ill-posed inverse problems , 2008 .
[5] Steven E. Rigdon,et al. Model-Oriented Design of Experiments , 1997, Technometrics.
[6] C. Atwood. Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .
[7] Yaming Yu,et al. D-optimal designs via a cocktail algorithm , 2009, Stat. Comput..
[8] Luc Pronzato,et al. Removing non-optimal support points in D-optimum design algorithms , 2003 .
[9] G. Burton. Sobolev Spaces , 2013 .
[10] J. Kiefer. General Equivalence Theory for Optimum Designs (Approximate Theory) , 1974 .
[11] Michael Hintermüller,et al. The Length of the Primal-Dual Path in Moreau-Yosida-Based Path-Following Methods for State Constrained Optimal Control , 2014, SIAM J. Optim..
[12] K. Bredies,et al. Inverse problems in spaces of measures , 2013 .
[13] Michael Jackson,et al. Optimal Design of Experiments , 1994 .
[14] Nicolas Courty,et al. Generalized conditional gradient: analysis of convergence and applications , 2015, ArXiv.
[15] M. Pachter,et al. Optimal control of partial differential equations , 1980 .
[16] Heinz Bauer,et al. Maß- und Integrationstheorie , 1992 .
[17] J. Kiefer,et al. Optimum Designs in Regression Problems , 1959 .
[18] Martin Jaggi,et al. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization , 2013, ICML.
[19] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. , 1913 .
[20] Roland Herzog,et al. Approximation of sparse controls in semilinear equations by piecewise linear functions , 2012, Numerische Mathematik.
[21] J. Graver,et al. Graduate studies in mathematics , 1993 .
[22] Philip Wolfe,et al. An algorithm for quadratic programming , 1956 .
[23] Karl Kunisch,et al. Path-following Methods for a Class of Constrained Minimization Problems in Function Space , 2006, SIAM J. Optim..
[24] Konstantin Pieper,et al. Finite element discretization and efficient numerical solution of elliptic and parabolic sparse control problems , 2015 .
[25] H. Wynn. The Sequential Generation of $D$-Optimum Experimental Designs , 1970 .
[26] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[27] Roland Herzog,et al. Sequentially optimal sensor placement in thermoelastic models for real time applications , 2015 .
[28] W. Näther. Optimum experimental designs , 1994 .
[29] Stefan Wendl,et al. Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.
[30] Gabriel Peyré,et al. Exact Support Recovery for Sparse Spikes Deconvolution , 2013, Foundations of Computational Mathematics.
[31] Anthony C. Atkinson,et al. Optimum Experimental Designs, with SAS , 2007 .
[32] Benjamin Pfaff,et al. Perturbation Analysis Of Optimization Problems , 2016 .
[33] H. Banks,et al. Experimental design for vector output systems , 2014, Inverse problems in science and engineering.
[34] G. Milliken. Nonlinear Regression Analysis and Its Applications , 1990 .
[35] E. Beale,et al. Confidence Regions in Non‐Linear Estimation , 1960 .
[36] Ernst Steinitz. Bedingt konvergente Reihen und konvexe Systeme. (Fortsetzung). , 1914 .
[37] K. Kunisch,et al. A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .
[38] Boris Vexler,et al. Adaptive Finite Element Methods for Parameter Identification Problems , 2013 .
[39] Karl Kunisch,et al. Feasible and Noninterior Path-Following in Constrained Minimization with Low Multiplier Regularity , 2006, SIAM J. Control. Optim..
[40] Georg Stadler,et al. A-Optimal Design of Experiments for Infinite-Dimensional Bayesian Linear Inverse Problems with Regularized ℓ0-Sparsification , 2013, SIAM J. Sci. Comput..
[41] D. Ucinski. Optimal measurement methods for distributed parameter system identification , 2004 .
[42] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[43] Roland Becker,et al. Parameter identification for chemical models in combustion problems , 2005 .
[44] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[45] Eldad Haber,et al. Experimental Design for Biological Systems , 2012, SIAM J. Control. Optim..
[46] Michael Ulbrich,et al. A Semismooth Newton Method with Multidimensional Filter Globalization for l1-Optimization , 2014, SIAM J. Optim..
[47] Michael Hinze,et al. A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..
[48] Hans Bock,et al. Numerical methods for optimum experimental design in DAE systems , 2000 .
[49] R. C. St. John,et al. D-Optimality for Regression Designs: A Review , 1975 .
[50] Konstantin Pieper,et al. Inverse point source location with the Helmholtz equation on a bounded domain , 2018, Computational Optimization and Applications.
[51] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[52] Hans Bock,et al. A sequential approach for nonlinear optimum experimental design in DAE systems , 1999 .
[53] Benjamin Recht,et al. The alternating descent conditional gradient method for sparse inverse problems , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[54] J. Dunn. Convergence Rates for Conditional Gradient Sequences Generated by Implicit Step Length Rules , 1980 .
[55] Dirk A. Lorenz,et al. A generalized conditional gradient method and its connection to an iterative shrinkage method , 2009, Comput. Optim. Appl..
[56] Valerii V. Fedorov,et al. Optimal Design for Nonlinear Response Models , 2013 .
[57] Karl Kunisch,et al. Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions , 2012, SIAM J. Control. Optim..
[58] Douglas M. Bates,et al. Nonlinear Regression Analysis and Its Applications , 1988 .
[59] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[60] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[61] Michael Ulbrich,et al. Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..
[62] H. Banks,et al. Experimental design and inverse problems in plant biological modeling , 2012 .