An opportunistic MIM-aware concurrent transmission protocol in IEEE802.11 WLANs

Distributed Coordination Function (DCF) of IEEE 802.11 WLANs prohibits concurrent transmissions to avoid packet collisions or interferences. This conservative transmission mechanism of DCF makes it hard to fully utilize the wireless capacity in terms of spatial reuse. Recent measurement studies demonstrate that a packet can survive the collision and can be decoded successfully by the receiver depending on the transmission order and relative signal strength. We call this physical layer Capture Effect. A new wireless PHY technology, namely, Message In Message (MIM) augments the probability of the PHY capture by adopting the enhanced preamble detection function. In this paper, we propose an opportunistic concurrent transmission protocol which exploits MIM functionality to maximize the system throughput of IEEE 802.11 WLANs. The key idea of our approach is that when an AP overhears other APs' transmission, it sends a packet to its client concurrently if the MIM capture threshold requirements are satisfied. Our ns-2 simulation results show that our scheme outperforms DCF up to 18% in most cases.

[1]  Ashok K. Agrawala,et al.  Sniffing out the correct physical layer capture model in 802.11b , 2004, Proceedings of the 12th IEEE International Conference on Network Protocols, 2004. ICNP 2004..

[2]  Yanghee Choi,et al.  An experimental study on the capture effect in 802.11a networks , 2007, WinTECH '07.

[3]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[4]  Wei Wang,et al.  SAM: enabling practical spatial multiple access in wireless LAN , 2009, MobiCom '09.

[5]  Nitin H. Vaidya,et al.  On the physical carrier sense in wireless ad hoc networks , 2004 .

[6]  Alec Wolman,et al.  Dyson: An Architecture for Extensible Wireless LANs , 2010, USENIX Annual Technical Conference.

[7]  Alec Wolman,et al.  Designing High Performance Enterprise Wi-Fi Networks , 2008, NSDI.

[8]  Alec Wolman,et al.  An Architecture for Extensible Wireless LANs , 2008, HotNets.

[9]  Konstantina Papagiannaki,et al.  Online estimation of RF interference , 2008, CoNEXT '08.

[10]  Andrzej Duda,et al.  Idle sense: an optimal access method for high throughput and fairness in rate diverse wireless LANs , 2005, SIGCOMM '05.

[11]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[12]  Kamesh Munagala,et al.  Message in Message (MIM): A Case for Shuffling Transmissions in Wireless Networks , 2008, HotNets.

[13]  Konstantina Papagiannaki,et al.  CENTAUR: realizing the full potential of centralized wlans through a hybrid data path , 2009, MobiCom '09.

[14]  H. T. Mouftah,et al.  Improving Spatial Reuse in Multihop Wireless Networks - A Survey , 2009, IEEE Communications Surveys & Tutorials.

[15]  Lusheng Ji,et al.  Location-Aware IEEE 802.11 for Spatial Reuse Enhancement , 2007, IEEE Transactions on Mobile Computing.

[16]  Srinivasan Seshan,et al.  DIRC: increasing indoor wireless capacity using directional antennas , 2009, SIGCOMM '09.

[17]  Yong Yang,et al.  How Physical Carrier Sense Affects System Throughput in IEEE 802.11 Wireless Networks , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[18]  Hari Balakrishnan,et al.  Harnessing Exposed Terminals in Wireless Networks , 2008, NSDI.

[19]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[20]  Konstantina Papagiannaki,et al.  Interference mitigation in enterprise WLANs through speculative scheduling , 2007, MobiCom '07.

[21]  Jongkeun Na,et al.  Collision-aware design of rate adaptation for multi-rate 802.11 WLANs , 2008, IEEE Journal on Selected Areas in Communications.

[22]  Kamesh Munagala,et al.  Order Matters: Transmission Reordering in Wireless Networks , 2012, IEEE/ACM Transactions on Networking.