Network Design Problems

Connectivity is a very important concept in combinatorial optimization. In Chapter 8 we showed how to compute the connectivity between each pair of vertices of an undirected graph. Now we are looking for subgraphs that satisfy certain connectivity requirements.

[1]  F. Hwang On Steiner Minimal Trees with Rectilinear Distance , 1976 .

[2]  Sanjeev Khanna,et al.  Network design for vertex connectivity , 2008, STOC.

[3]  David P. Williamson,et al.  Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems , 2006, J. Comput. Syst. Sci..

[4]  David P. Williamson,et al.  Primal-Dual Approximation Algorithms for Integral Flow and Multicut in Trees, with Applications to Matching and Set Cover , 1993, ICALP.

[5]  S. E. Dreyfus,et al.  The steiner problem in graphs , 1971, Networks.

[6]  Marek Karpinski,et al.  New Approximation Algorithms for the Steiner Tree Problems , 1997, J. Comb. Optim..

[7]  Zoltán Szigeti,et al.  Improving on the 1.5-Approximation of a Smallest 2-Edge Connected Spanning Subgraph , 2001, SIAM J. Discret. Math..

[8]  Amit Kumar,et al.  Provisioning a virtual private network: a network design problem for multicommodity flow , 2001, STOC '01.

[9]  Harold N. Gabow,et al.  An Improved Analysis for Approximating the Smallest k-Edge Connected Spanning Subgraph of a Multigraph , 2005, SIAM J. Discret. Math..

[10]  Dimitris Bertsimas,et al.  The parsimonious property of cut covering problems and its applications , 1997, Oper. Res. Lett..

[11]  David P. Williamson,et al.  An efficient approximation algorithm for the survivable network design problem , 1998, Math. Program..

[12]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[13]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[14]  R. Ravi,et al.  A New Bound for the 2-Edge Connected Subgraph Problem , 1998, IPCO.

[15]  Miroslav Chlebík,et al.  The Steiner tree problem on graphs: Inapproximability results , 2008, Theor. Comput. Sci..

[16]  Kurt Mehlhorn,et al.  A Faster Approximation Algorithm for the Steiner Problem in Graphs , 1988, Inf. Process. Lett..

[17]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[18]  Éva Tardos,et al.  Approximation Algorithms for a Directed Network Design Problem , 1999, IPCO.

[19]  Piotr Berman,et al.  Improved approximations for the Steiner tree problem , 1992, SODA '92.

[20]  Navin Goyal,et al.  The VPN Conjecture Is True , 2013, JACM.

[21]  J. Berney Etude électronystagmographique des vertiges labyrinthiques par l’épreuve giratoire liminaire , 1959 .

[22]  Balaji Raghavachari,et al.  A 5/4-approximation algorithm for minimum 2-edge-connectivity , 2003, SODA '03.

[23]  Choukhmane El-Arbi Une heuristique pour le problème de l'arbre de Steiner , 1978 .

[24]  Andrew V. Goldberg,et al.  Improved approximation algorithms for network design problems , 1994, SODA '94.

[25]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[26]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[27]  Fabrizio Grandoni,et al.  An improved LP-based approximation for steiner tree , 2010, STOC '10.

[28]  M. Hanan,et al.  On Steiner’s Problem with Rectilinear Distance , 1966 .

[29]  David P. Williamson,et al.  Approximating the smallest k-edge connected spanning subgraph by LP-rounding , 2009 .

[30]  Sanjeev Arora,et al.  Nearly Linear Time Approximation Schemes for Euclidean TSP and Other Geometric Problems , 1997, RANDOM.

[31]  Alex Zelikovsky,et al.  An 11/6-approximation algorithm for the network steiner problem , 1993, Algorithmica.

[32]  Santosh S. Vempala,et al.  Factor 4/3 approximations for minimum 2-connected subgraphs , 2000, APPROX.

[33]  Martin Thimm,et al.  On the approximability of the Steiner tree problem , 2003, Theor. Comput. Sci..

[34]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[35]  Q. Feng,et al.  On better heuristic for Euclidean Steiner minimum trees , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[36]  Hans Jürgen Prömel,et al.  The Steiner Tree Problem , 2002 .

[37]  George Markowsky,et al.  A fast algorithm for Steiner trees , 1981, Acta Informatica.

[38]  David P. Williamson,et al.  A primal-dual approximation algorithm for generalized steiner network problems , 1995, Comb..

[39]  Mohit Singh,et al.  Simpler analysis of LP extreme points for traveling salesman and survivable network design problems , 2010, Oper. Res. Lett..

[40]  M. Grötschel,et al.  Chapter 10 Design of survivable networks , 1995 .

[41]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[42]  Thomas Rothvoß,et al.  Matroids and integrality gaps for hypergraphic steiner tree relaxations , 2011, STOC '12.

[43]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[44]  Luca Trevisan,et al.  Improved Non-approximability Results for Minimum Vertex Cover with Density Constraints , 1999, Electron. Colloquium Comput. Complex..

[45]  Sanjeev Khanna,et al.  An O(k3log n)-Approximation Algorithm for Vertex-Connectivity Survivable Network Design , 2012, Theory Comput..

[46]  Kamal Jain A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem , 2001, Comb..

[47]  R. Ravi,et al.  When cycles collapse: A general approximation technique for constrained two-connectivity problems , 1992, IPCO.

[48]  Xinhui Wang,et al.  Dynamic Programming for Minimum Steiner Trees , 2007, Theory of Computing Systems.

[49]  Éva Tardos,et al.  Algorithms for a network design problem with crossing supermodular demands , 2004, Networks.

[50]  Zoltán Szigeti,et al.  An Improved Approximation Algorithm for Minimum Size 2-Edge Connected Spanning Subgraphs , 1998, IPCO.

[51]  Ding-Zhu Du,et al.  A proof of the Gilbert-Pollak conjecture on the Steiner ratio , 1992, Algorithmica.

[52]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[53]  Hervé Kerivin,et al.  Design of Survivable Networks: A survey , 2005 .

[54]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[55]  Jens Vygen Faster algorithm for optimum Steiner trees , 2011, Inf. Process. Lett..

[56]  Michel X. Goemans,et al.  Survivable networks, linear programming relaxations and the parsimonious property , 1993, Math. Program..

[57]  Lawrence T. Kou On efficient implementation of an approximation algorithm for the Steiner tree problem , 2004, Acta Informatica.

[58]  Dimitris Bertsimas,et al.  From valid inequalities to heuristics: a unified view of primal-dual approximation algorithms in covering problems , 1995, SODA '95.

[59]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[60]  M. Stoer Design of Survivable Networks , 1993 .

[61]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.

[62]  Alex Zelikovsky,et al.  Improved Steiner tree approximation in graphs , 2000, SODA '00.

[63]  Martin Skutella,et al.  A short proof of the VPN Tree Routing Conjecture on ring networks , 2008, Oper. Res. Lett..

[64]  Robert Krauthgamer,et al.  Hardness of Approximation for Vertex-Connectivity Network Design Problems , 2004, SIAM J. Comput..

[65]  D. Du,et al.  Advances in Steiner trees , 2000 .

[66]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[67]  David M. Warme,et al.  Exact Algorithms for Plane Steiner Tree Problems: A Computational Study , 2000 .

[68]  S. Hougardy,et al.  Approximation Algorithms for the Steiner Tree Problem in Graphs , 2001 .

[69]  Samir Khuller,et al.  Improved Approximation Algorithms for Uniform Connectivity Problems , 1996, J. Algorithms.

[70]  Jochen Könemann,et al.  Approximation algorithms for network design: A survey , 2011 .

[71]  Cristina G. Fernandes A better approximation ratio for the minimum k-edge-connected spanning subgraph problem , 1997, SODA '97.

[72]  Hans Jürgen Prömel,et al.  A 1.598 approximation algorithm for the Steiner problem in graphs , 1999, SODA '99.

[73]  David S. Johnson,et al.  The Complexity of Computing Steiner Minimal Trees , 1977 .

[74]  Joseph Cheriyan,et al.  Approximating Minimum-Size k-Connected Spanning Subgraphs via Matching , 1998, Electron. Colloquium Comput. Complex..

[75]  Adrian Vetta,et al.  Approximation Algorithms for Network Design with Metric Costs , 2007, SIAM J. Discret. Math..

[76]  Ding-Zhu Du,et al.  The k-Steiner Ratio in Graphs , 1997, SIAM J. Comput..

[77]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[78]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[79]  Fabrizio Grandoni,et al.  Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.