Effect of added nickel nitrate on the physical, thermal and morphological characteristics of polyacrylonitrile-based carbon nanofibers

Abstract Porous carbon nanofibers (CNFs) with enhanced physical, thermal and morphological properties are desirable in many areas like catalyst support in fuel cells and supercapacitors as electrode material. This research addresses the effect of added nickel nitrate in 1, 3 and 5 wt% into polyacrylonitrile (PAN) precursor solution to produce CNF webs using electrospinning method. Based on the quantitative data obtained from field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) images, we can notice that CNFs were formed with diameters in the size range of 100–300 nm after carbonization at 1000 °C. Fiber diameter of the random CNFs was decreased by increasing the nickel nitrate contents along with dramatic improvements in porosity and specific surface areas. This study indicated that the optimal nickel nitrate concentration of 5 wt% has produced CNFs with enhanced physical and thermo-chemical properties. The high resolution X-ray diffraction (HR-XRD) showed an increase in intensity of 0 0 2 peak of the CNFs due to the catalytic function of nickel oxide in the carbonized web and these observations are in agreement with the thermal gravimetric data.

[1]  K. Kimura,et al.  New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte , 2005 .

[2]  W. Estrada,et al.  Improved electrochromic films of NiOx and WOxPy obtained by spray pyrolysis , 2000 .

[3]  M. Endo,et al.  Preparation of nickel–carbon nanofiber composites by a pulse-reverse electrodeposition process , 2005 .

[4]  C. Kim,et al.  Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning , 2003 .

[5]  Tatsumi Ishihara,et al.  High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3 − δ ∕ Ce0.8Sm0.2O2 − δ Composite Film , 2005 .

[6]  C. Park,et al.  Carbon deposition on iron-nickel during interaction with ethylene--carbon monoxide--hydrogen mixtures , 1997 .

[7]  Yoshiyuki Sato,et al.  Optical humidity sensitivity of plasma-oxidized nickel oxide films , 1999 .

[8]  J. Tarascon,et al.  Electrochemically Inactive Nickel Oxide as Electrochromic Material , 2004 .

[9]  J. Geus,et al.  Interaction Of Nickel Ions With Silica Supports During Deposition-Precipitation , 1979 .

[10]  D. Şenol,et al.  Study of Changes in Polymer–Probe Interactions with Stabilization Temperature of a Column Contained Polyacrylonitrile by Using Inverse Gas Chromatography , 2004 .

[11]  F. Rodríguez-Reinoso,et al.  CARBON MATERIALS IN CATALYSIS , 1996 .

[12]  Park Tae Jin,et al.  Raman spectroscopic evaluation of polyacrylonitrile‐based carbon nanofibers prepared by electrospinning , 2004 .

[13]  J. Ferraris,et al.  Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning , 2009 .

[14]  M. Kurtinaitienė,et al.  Ni-SiC composite plated under a modulated current , 1999 .

[15]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[16]  A. Małecki,et al.  Formation of N2O during thermal decomposition of d-metal hydrates nitrates , 2006 .

[17]  R. Dendievel,et al.  Filler-filler interactions and viscoelastic behavior of polymer nanocomposites , 2004 .

[18]  Dmitry Bedrov,et al.  A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite , 2003 .

[19]  M. Endo,et al.  Carbon nanofiber–copper composite powder prepared by electrodeposition , 2003 .

[20]  Jung Sub Kim,et al.  Reaction mechanisms of polyacrylonitrile on thermal treatment , 1993 .

[21]  Jogender Singh,et al.  A novel laser-liquid-solid interaction technique for synthesis of silver, nickel and immiscible silver-nickel alloys from liquid precursors , 2000 .

[22]  Morinobu Endo,et al.  Self‐Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride , 2007 .

[23]  Pietro Siciliano,et al.  Sensing characteristics of NiO thin films as NO2 gas sensor , 2002 .

[24]  Y. Dzenis,et al.  Spinning Continuous Fibers for Nanotechnology , 2004, Science.

[25]  Joseph D. Wander,et al.  Chemical and Biological Protection and Detection in Fabrics for Protective Clothing , 2003 .

[26]  M. Endo,et al.  Carbon Nanofiber-Copper Composites Fabricated by Electroplating , 2004 .

[27]  K. Choy,et al.  Processing and structural characterization of porous reforming catalytic films , 2006 .

[28]  Andris Azens,et al.  Sputter-deposited nickel oxide for electrochromic applications , 1998 .

[29]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[30]  P. Walker,et al.  Measurement of interlayer spacings and crystal sizes in turbostratic carbons , 1963 .

[31]  M. A. Ermakova,et al.  New Nickel Catalysts for the Formation of Filamentous Carbon in the Reaction of Methane Decomposition , 1999 .

[32]  P. Bukovec,et al.  Preparation and structural investigations of electrochromic nanosized NiOx films made via the sol-gel route , 2003 .

[33]  D. Bedrov,et al.  A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites , 2002 .

[34]  K. Lozano,et al.  Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses , 2001 .

[35]  C. Louis,et al.  Ni/SiO2 Materials Prepared by Deposition−Precipitation: Influence of the Reduction Conditions and Mechanism of Formation of Metal Particles , 2000 .

[36]  Changmiao Chen,et al.  Corrosion behavior of carbon nanotubes–Ni composite coating , 2005 .

[37]  Chunye Xu,et al.  Oxidative stabilization of PAN/VGCF composite , 2003 .

[38]  David J. Smith,et al.  Decorating carbon nanotubes with nanostructured nickel particles via chemical methods , 2006 .

[39]  Claes G. Granqvist,et al.  Handbook of inorganic electrochromic materials , 1995 .

[40]  Younan Xia,et al.  Electrospinning of Nanofibers: Reinventing the Wheel? , 2004 .

[41]  C. Pham‐Huu,et al.  Carbon nanofibers grown over graphite supported Ni catalyst: relationship between octopus-like growth mechanism and macro-shaping , 2007 .

[42]  Yaohui Zhang,et al.  A screen-printed Ce0.8Sm0.2O1.9 film solid oxide fuel cell with a Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode , 2006 .

[43]  A. Heeger,et al.  Optical studies of pyrolyzed polyacrylonitrile , 1984 .

[44]  R. Baker,et al.  Pt/Graphite Nanofiber Catalyst in n-Hexane Test Reaction , 2000 .

[45]  P. Pötschke,et al.  Carbon nanofibers for composite applications , 2004 .

[46]  M. Endo,et al.  Ni-fluorinated vapor growth carbon fiber (VGCF) composite films prepared by an electrochemical deposition process , 2004 .

[47]  G. Henrici-Olivė,et al.  The chemistry of carbon fiber formation from polyacrylonitrile , 1983 .

[48]  B. Hsiao,et al.  Physical gelation in ethylene–propylene copolymer melts induced by polyhedral oligomeric silsesquioxane (POSS) molecules , 2003 .

[49]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[50]  Darrell H. Reneker,et al.  Carbon nanofibers from polyacrylonitrile and mesophase pitch , 1999 .

[51]  R. Baker,et al.  Graphite Nanofibers as an Electrode for Fuel Cell Applications , 2001 .