A hybrid membrane evolutionary algorithm for solving constrained optimization problems

[1]  Qi Meng,et al.  A hybrid approach based on differential evolution and tissue membrane systems for solving constrained manufacturing parameter optimization problems , 2013, Appl. Soft Comput..

[2]  Patrick Siarry,et al.  Biogeography-based optimization for constrained optimization problems , 2012, Comput. Oper. Res..

[3]  M. Gheorghe,et al.  A membrane algorithm with quantum-inspired subalgorithms and its application to image processing , 2012, Natural Computing.

[4]  Jian-hua Xiao,et al.  A membrane evolutionary algorithm for DNA sequence design in DNA computing , 2012 .

[5]  Xiangxiang Zeng,et al.  Time-Free Spiking Neural P Systems , 2011, Neural Computation.

[6]  Linqiang Pan,et al.  A Tissue P Systems Based Uniform Solution to Tripartite Matching Problem , 2011, Fundam. Informaticae.

[7]  Dervis Karaboga,et al.  A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems , 2011, Appl. Soft Comput..

[8]  Dexuan Zou,et al.  A novel modified differential evolution algorithm for constrained optimization problems , 2011, Comput. Math. Appl..

[9]  Ge-Xiang Zhang,et al.  Analyzing radar emitter signals with membrane algorithms , 2010, Math. Comput. Model..

[10]  Gheorghe Păun,et al.  Spiking Neural P Systems with Weights , 2010, Neural Computation.

[11]  Linqiang Pan,et al.  Spiking neural P systems: An improved normal form , 2010, Theor. Comput. Sci..

[12]  Liang Huang,et al.  Controller design for a marine diesel engine using membrane computing , 2009 .

[13]  Yong Wang,et al.  A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems , 2009, Frontiers of Computer Science in China.

[14]  Alfonso Rodríguez-Patón,et al.  A P system and a constructive membrane-inspired DNA algorithm for solving the Maximum Clique Problem , 2007, Biosyst..

[15]  Yuren Zhou,et al.  Multiobjective Optimization and Hybrid Evolutionary Algorithm to Solve Constrained Optimization Problems , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Huang Liang,et al.  P systems based multi-objective optimization algorithm , 2007 .

[17]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[18]  Huanwen Tang,et al.  An improved simulated annealing for solving the linear constrained optimization problems , 2006, Appl. Math. Comput..

[19]  Leandro dos Santos Coelho,et al.  Coevolutionary Particle Swarm Optimization Using Gaussian Distribution for Solving Constrained Optimization Problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[20]  Artiom Alhazov,et al.  Solving HPP and SAT by P Systems with Active Membranes and Separation Rules , 2006, Acta Informatica.

[21]  Gabriel Ciobanu,et al.  Distributed Evolutionary Algorithms Inspired by Membranes in Solving Continuous Optimization Problems , 2006, Workshop on Membrane Computing.

[22]  A. Amirjanov The development of a changing range genetic algorithm , 2006 .

[23]  Linqiang Pan,et al.  Solving multidimensional 0-1 knapsack problem by P systems with input and active membranes , 2005, J. Parallel Distributed Comput..

[24]  Artiom Alhazov,et al.  Solving a PSPACE-Complete Problem by Recognizing P Systems with Restricted Active Membranes , 2003, Fundam. Informaticae.

[25]  Jens Gottlieb,et al.  Evolutionary algorithms for constrained optimization problems , 2000, Berichte aus der Informatik.

[26]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[27]  Liam Paninski,et al.  Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains , 2011, Neural Computation.

[28]  Hong Peng,et al.  AN EXTENDED SPIKING NEURAL P SYSTEM FOR FUZZY KNOWLEDGE REPRESENTATION , 2011 .

[29]  Pascal Caron,et al.  From Glushkov WFAs to K-Expressions , 2011, Fundam. Informaticae.

[30]  Seppo J. Ovaska,et al.  A modified harmony search method in constrained optimization , 2010 .

[31]  Marian Gheorghe,et al.  A Quantum-Inspired Evolutionary Algorithm Based on P systems for Knapsack Problem , 2008, Fundam. Informaticae.