Galaxy And Mass Assembly (GAMA): Defining passive galaxy samples and searching for the UV upturn

We use data from the GAMA and GALEX surveys to demonstrate that the UV upturn, an unexpected excess of ultraviolet flux from a hot stellar component, seen in the spectra of many early-type galaxies, arises from processes internal to individual galaxies with no measurable influence from the galaxies’ larger environment. We first define a clean sample of passive galaxies without a significant contribution to their UV flux from low-level star formation. We confirm that galaxies with the optical colours of red sequence galaxies often have signs of residual star formation, which, without other information, would prevent a convincing demonstration of the presence of UV upturns. However, by including (NUV−u) and WISE (W2–W3) colours, and FUV data where it exists, we can convincingly constrain samples to be composed of non-star-forming objects. Using such a sample, we examine GALEX photometry of low-redshift GAMA galaxies in a range of low-density environments, from groups to the general field, searching for UV upturns. We find a wide range of (NUV−r) colours, entirely consistent with the range seen – and attributed to the UV upturn – in low-redshift red sequence cluster galaxies. The range of colours is independent of group multiplicity or velocity dispersion, with isolated passive galaxies just as likely to have blue UV-to-optical colours, implying significant upturn components, as those in richer groups and in the previous data on clusters. This is supported by equivalent results for (FUV−r) colours which are clear indicators of upturn components.

[1]  C. Conroy,et al.  Beyond UVJ: More Efficient Selection of Quiescent Galaxies with Ultraviolet/Mid-infrared Fluxes , 2019, The Astrophysical Journal.

[2]  J. Hora,et al.  A Census of Star Formation in the Outer Galaxy: The SMOG Field , 2019, The Astrophysical journal.

[3]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA): Timescales for galaxies crossing the green valley , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  J. Lucey,et al.  NUV–IR colours of red sequence galaxies in local clusters , 2019 .

[5]  M. Bremer,et al.  Luminosity functions of cluster galaxies , 2018, Astronomy & Astrophysics.

[6]  Finland.,et al.  The rise and fall of the UV upturn: z = 0.3, 0.55, and 0.7 , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  UK.,et al.  Evolution of the UV upturn in cluster galaxies: Abell 1689 , 2018, 1805.01472.

[8]  UK.,et al.  UV SEDs of early-type cluster galaxies: a new look at the UV upturn , 2018, 1801.09688.

[9]  Santiago,et al.  Galaxy and Mass Assembly (GAMA): Morphological transformation of galaxies across the green valley , 2018, 1801.04277.

[10]  S. Bamford,et al.  Galaxy And Mass Assembly: The G02 field, Herschel-ATLAS target selection and data release 3 , 2017, 1711.09139.

[11]  Liverpool John Moores University,et al.  Galaxy and mass assembly (GAMA): The consistency of GAMA and WISE derived mass-to-light ratios , 2017, 1709.08316.

[12]  M. Cluver,et al.  Calibrating Star Formation in WISE Using Total Infrared Luminosity , 2017, 1710.03469.

[13]  R. Propris The K-band luminosity functions of cluster galaxies , 2016, 1611.04911.

[14]  D. Jones,et al.  Near-ultraviolet signatures of environment-driven galaxy quenching in Sloan Digital Sky Survey groups , 2017 .

[15]  J. Schombert COLORS OF ELLIPTICALS FROM GALEX TO SPITZER , 2016, 1609.07500.

[16]  A. Hopkins,et al.  GAMA/H-ATLAS: a meta-analysis of SFR indicators – comprehensive measures of the SFR–M* relation and cosmic star formation history at z < 0.4 , 2016, 1606.06299.

[17]  K. Pimbblet,et al.  A photometrically and spectroscopically confirmed population of passive spiral galaxies , 2016, 1606.03781.

[18]  A. Hopkins,et al.  Galaxy And Mass Assembly: accurate panchromatic photometry from optical priors using lambdar , 2016 .

[19]  A. Hopkins,et al.  Galaxy And Mass Assembly (GAMA) : the stellar mass budget by galaxy type. , 2015, 1512.02342.

[20]  J. A. Vázquez-Mata,et al.  Galaxy And Mass Assembly (GAMA): Panchromatic Data Release (far-UV–far-IR) and the low-z energy budget , 2015, 1508.02076.

[21]  S. Lucatello,et al.  The incidence of binaries in Globular Cluster stellar populations , 2015, 1509.05014.

[22]  J. A. Vázquez-Mata,et al.  Galaxy and mass assembly (GAMA): End of survey report and data release 2 , 2015, 1506.08222.

[23]  A. Hopkins,et al.  H-ATLAS/GAMA: quantifying the morphological evolution of the galaxy population using cosmic calorimetry , 2015, 1506.05466.

[24]  A. Hopkins,et al.  Galaxy And Mass Assembly: Deconstructing Bimodality - I. Red ones and blue ones , 2014, 1408.5984.

[25]  S. Salim Green Valley Galaxies , 2014, 1501.01963.

[26]  G. Bruzual,et al.  Binary stars and the UVX in early type galaxies , 2014, 1408.3426.

[27]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): stellar mass functions by Hubble type , 2014, 1407.7555.

[28]  A. Hopkins,et al.  GALAXY AND MASS ASSEMBLY (GAMA): MID-INFRARED PROPERTIES AND EMPIRICAL RELATIONS FROM WISE , 2014, 1401.0837.

[29]  D. Jones,et al.  Environments and morphologies of red sequence galaxies with residual star formation in massive clusters , 2013, 1310.7602.

[30]  Bernhard R. Brandl,et al.  AN ATLAS OF GALAXY SPECTRAL ENERGY DISTRIBUTIONS FROM THE ULTRAVIOLET TO THE MID-INFRARED , 2013, 1312.3029.

[31]  Dominic J. Benford,et al.  Explanatory Supplement to the AllWISE Data Release Products , 2013, WISE 2013.

[32]  Bruno Milliard,et al.  Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies , 2013, 1309.0008.

[33]  A. Hopkins,et al.  Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution , 2013, 1308.2985.

[34]  L. Sodr'e,et al.  The nature of extremely red galaxies in the local universe , 2013, 1306.6552.

[35]  A. Hopkins,et al.  GAMA/H-ATLAS : linking the properties of submm detected and undetected early-type galaxies - I. z <= 0.06 sample , 2013, 1302.4276.

[36]  Zhongmu Li,et al.  THE POTENTIAL IMPORTANCE OF BINARY EVOLUTION IN ULTRAVIOLET–OPTICAL SPECTRAL FITTING OF EARLY-TYPE GALAXIES , 2013, 1302.0927.

[37]  Australian National University,et al.  Galaxy And Mass Assembly (GAMA): Spectroscopic analysis , 2013, 1301.7127.

[38]  J. Lucey,et al.  What drives the ultraviolet colours of passive galaxies , 2012, 1201.1907.

[39]  Young-Wook Lee,et al.  THE EFFECT OF HELIUM-ENHANCED STELLAR POPULATIONS ON THE ULTRAVIOLET-UPTURN PHENOMENON OF EARLY-TYPE GALAXIES , 2011, Proceedings of the International Astronomical Union.

[40]  Ivan K. Baldry,et al.  Galaxy And Mass Assembly (GAMA): Structural Investigation of Galaxies via Model Analysis , 2011, 1112.1956.

[41]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[42]  S. Bamford,et al.  Galaxy And Mass Assembly: Stellar Mass Estimates , 2011, 1108.0635.

[43]  L. Hartmann,et al.  COMPLEX STRUCTURE IN CLASS 0 PROTOSTELLAR ENVELOPES. II. KINEMATIC STRUCTURE FROM SINGLE-DISH AND INTERFEROMETRIC MOLECULAR LINE MAPPING , 2011, 1107.4361.

[44]  E. L. Wright,et al.  THE SPITZER–WISE SURVEY OF THE ECLIPTIC POLES , 2011 .

[45]  Jihye Lee,et al.  THE ULTRAVIOLET UPTURN IN ELLIPTICAL GALAXIES AND ENVIRONMENTAL EFFECTS , 2011, 1107.0005.

[46]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G3Cv1) , 2011, 1106.1994.

[47]  D. Carter,et al.  The spatial distribution and origin of the FUV excess in early-type galaxies , 2011, 1103.0743.

[48]  K. Schawinski,et al.  The SAURON project - XVIII. The integrated UV-line-strength relations of early-type galaxies , 2011, 1102.0957.

[49]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release , 2010, 1009.0614.

[50]  S. Kaviraj Recent star formation in local, morphologically disturbed spheroidal galaxies on the optical red sequence , 2010, 1007.4810.

[51]  R. Rich,et al.  STAR FORMATION SIGNATURES IN OPTICALLY QUIESCENT EARLY-TYPE GALAXIES , 2010, 1004.2041.

[52]  S. Dye,et al.  Galaxy And Mass Assembly (GAMA): the input catalogue and star–galaxy separation , 2009, 0910.5120.

[53]  S. Bamford,et al.  Galaxy and Mass Assembly (GAMA): Optimal Tiling of Dense Surveys with a Multi-Object Spectrograph , 2009, Publications of the Astronomical Society of Australia.

[54]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[55]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[56]  C. Kochanek,et al.  EVOLUTION OF THE UV EXCESS IN EARLY-TYPE GALAXIES , 2008, 0808.0010.

[57]  J. Gunn,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING I: THE RELEVANCE OF UNCERTAIN ASPECTS OF STELLAR EVOLUTION AND THE IMF TO THE DERIVED PHYSICAL PR , 2022 .

[58]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[59]  Waterloo,et al.  Near ultraviolet–infrared colours of red-sequence galaxies in local clusters , 2008, 0801.2390.

[60]  A. Szalay,et al.  The Calibration and Data Products of GALEX , 2007 .

[61]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[62]  S. Kaviraj,et al.  Erratum: Better age estimation using ultraviolet–optical colours: breaking the age–metallicity degeneracy , 2006, astro-ph/0601050.

[63]  K. Schawinski,et al.  The Effect of Environment on the Ultraviolet Color-Magnitude Relation of Early-Type Galaxies , 2006, astro-ph/0601036.

[64]  K. Schawinski,et al.  A Binary Model for the UV-upturn of Elliptical Galaxies , 2006, Proceedings of the International Astronomical Union.

[65]  A. Szalay,et al.  GALEX UV Color Relations for Nearby Early-Type Galaxies , 2006, astro-ph/0608594.

[66]  Porto,et al.  Ages and metallicities of early-type galaxies in the SDSS: new insight into the physical origin of the colour-magnitude and the Mg2-sigmaV relations , 2006, astro-ph/0605300.

[67]  K. Schawinski,et al.  UV-Optical Colors as Probes of Early-Type Galaxy Evolution , 2006, astro-ph/0601029.

[68]  Carlos E. C. J. Gabriel,et al.  Astronomical Data Analysis Software and Systems Xv , 2022 .

[69]  G. Gavazzi,et al.  UV Properties of Early-Type Galaxies in the Virgo Cluster , 2005, astro-ph/0507169.

[70]  C. Ree,et al.  Super-Helium-rich Populations and the Origin of Extreme Horizontal-Branch Stars in Globular Clusters , 2005, astro-ph/0501500.

[71]  A. Szalay,et al.  Systematics of the Ultraviolet Rising Flux in a GALEX/SDSS Sample of Early-Type Galaxies , 2004, astro-ph/0411356.

[72]  D. Schiminovich,et al.  Galaxy Evolution Explorer Ultraviolet Color-Magnitude Relations and Evidence of Recent Star Formation in Early-Type Galaxies , 2004, astro-ph/0411327.

[73]  Will Saunders,et al.  AAOmega: a scientific and optical overview , 2004, SPIE Astronomical Telescopes + Instrumentation.

[74]  J. Norris The Helium Abundances of ω Centauri , 2004 .

[75]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[76]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[77]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[78]  R. Rood,et al.  Age and Abundance Discrimination in Old Stellar Populations Using Mid-Ultraviolet Colors , 2003, astro-ph/0303477.

[79]  I. Parry,et al.  The Anglo-Australian Observatory 2dF facility , 2002, astro-ph/0202175.

[80]  H. Ferguson,et al.  Far-Ultraviolet Emission from Elliptical Galaxies at z = 0.33 , 2003, astro-ph/0301364.

[81]  H. Ferguson,et al.  Far-Ultraviolet Emission from Elliptical Galaxies at z = 0.55 , 1999, astro-ph/9912027.

[82]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[83]  J. Tonry,et al.  The Surface Brightness Fluctuation Survey of Galaxy Distances. II. Local and Large-Scale Flows , 1999, astro-ph/9907062.

[84]  Hia,et al.  Differential Galaxy Evolution in Cluster and Field Galaxies at z ≈ 0.3 , 1999, astro-ph/9906470.

[85]  R. O’Connell Far-Ultraviolet Radiation from Elliptical Galaxies , 1999, astro-ph/9906068.

[86]  P. Demarque,et al.  On the Origin of the Ultraviolet Upturn in Elliptical Galaxies. II. Test of the Horizontal-Branch Hypothesis , 1997, astro-ph/9708185.

[87]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[88]  R. Rood,et al.  Ultraviolet radiation from evolved stellar populations. 2: The ultraviolet upturn phenomenon in elliptical galaxies , 1994, astro-ph/9405030.

[89]  F. Deubner,et al.  Ground — based instrumentation , 1994 .

[90]  A. Renzini,et al.  Clues on the hot star content and the ultraviolet output of elliptical galaxies , 1990 .

[91]  T. Lauer,et al.  The far-ultraviolet spectra of early-type galaxies , 1988 .

[92]  J. B. Oke,et al.  IUE observations of NGC 4649, an elliptical galaxy with a strong ultraviolet flux , 1982 .

[93]  A. Code,et al.  Ultraviolet photometry from the Orbiting Astronomical Observatory. XXVI. Energy distributions of seven early-type galaxies and the central bulge of M31. , 1979 .

[94]  Sandra M. Faber,et al.  Variations in Spectral-Energy Distributions and Absorption-Line Strengths among Elliptical Galaxies , 1973 .