Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion

Ordinary materials can transform into novel phases at extraordinary high pressure and temperature. The recently developed method of ultrashort laser-induced confined microexplosions initiates a non-equilibrium disordered plasma state. Ultra-high quenching rates overcome kinetic barriers to the formation of new metastable phases, which are preserved in the surrounding pristine crystal for subsequent exploitation. Here we demonstrate that confined microexplosions in silicon produce several metastable end phases. Comparison with an ab initio random structure search reveals six energetically competitive potential phases, four tetragonal and two monoclinic structures. We show the presence of bt8 and st12, which have been predicted theoretically previously, but have not been observed in nature or in laboratory experiments. In addition, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings may pave the way for new materials with novel and exotic properties.

[1]  Malcolm Guthrie,et al.  Thermal evolution of the metastable r8 and bc8 polymorphs of silicon , 2015 .

[2]  M. Koenig,et al.  Laser-shock compression of diamond and evidence of a negative-slope melting curve. , 2007, Nature materials.

[3]  Gilbert W. Collins,et al.  Melting temperature of diamond at ultrahigh pressure , 2010 .

[4]  B. Granoff,et al.  Role of Impurities , 1984 .

[5]  P. McMillan Pressing on: The legacy of Percy W. Bridgman , 2005, Nature materials.

[6]  Angel Rubio,et al.  High-pressure phases of group-IV, III–V, and II–VI compounds , 2003 .

[7]  B Luther-Davies,et al.  Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. , 2006, Physical review letters.

[8]  H. Mizuseki,et al.  Kinetic origin of divergent decompression pathways in silicon and germanium. , 2013, Physical Review Letters.

[9]  Raymond Jeanloz,et al.  Achieving high-density states through shock-wave loading of precompressed samples , 2007, Proceedings of the National Academy of Sciences.

[10]  R. H. Wentorf,et al.  Two New Forms of Silicon , 1963, Science.

[11]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[12]  B. Malone,et al.  Ab initiosurvey of the electronic structure of tetrahedrally bonded phases of silicon , 2008 .

[13]  Ian L. Spain,et al.  New metastable phases of silicon , 1986 .

[14]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[15]  Saulius Juodkazis,et al.  Laser-matter interaction in the bulk of a transparent solid: confined microexplosion and void formation , 2006 .

[16]  P. Dobson Physics of Semiconductor Devices (2nd edn) , 1982 .

[17]  B. Malone,et al.  Prediction of a metastable phase of silicon in the Ibam structure , 2012 .

[18]  Eric Mazur,et al.  Pressure-induced phase transformations during femtosecond-laser doping of silicon , 2011 .

[19]  Saulius Juodkazis,et al.  Evidence of superdense synthesized by ultrafast microexplosion , 2011, Nature communications.

[20]  James Williams,et al.  New insight into pressure-induced phase transitions of amorphous silicon: the role of impurities , 2013 .

[21]  Paul F. McMillan,et al.  New materials from high-pressure experiments , 2002, Nature materials.

[22]  Gilbert W. Collins,et al.  Shock-induced transformation of Al2O3 and LiF into semiconducting liquids. , 2003, Physical review letters.

[23]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[24]  R. Trunin,et al.  Shock compressibility of condensed materials in strong shock waves generated by underground nuclear explosions , 1994 .

[25]  D. Rocca,et al.  High-pressure core structures of Si nanoparticles for solar energy conversion. , 2013, Physical review letters.

[26]  Jian Sun,et al.  Direct Band Gap Silicon Allotropes , 2014 .

[27]  S. Koenig,et al.  Annealing of nanoindentation-induced high pressure crystalline phases created in crystalline and amorphous silicon , 2009 .

[28]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  Saulius Juodkazis,et al.  Generation of high energy density by fs-laser-induced confined microexplosion , 2013 .

[30]  J. Mansot,et al.  Characterisation of Si III and Si IV, metastable forms of silicon at ambient pressure , 1989 .

[31]  R. P. Drake,et al.  High-energy-density physics , 2010 .

[32]  G. Ackland,et al.  Aluminium: Simple metal no more. , 2010, Nature materials.

[33]  Kojiro F. Kobayashi,et al.  Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave , 2011 .

[34]  Brad D. Malone,et al.  \textit{Ab initio} study of the optical properties of Si-XII , 2008 .

[35]  K. Burke Perspective on density functional theory. , 2012, The Journal of chemical physics.

[36]  Stefan Goedecker,et al.  Low-energy silicon allotropes with strong absorption in the visible for photovoltaic applications , 2012, 1203.5669.

[37]  Saulius Juodkazis,et al.  Warm dense matter at the bench-top: Fs-laser-induced confined micro-explosion , 2012 .

[38]  Malcolm Guthrie,et al.  Controlled formation of metastable germanium polymorphs , 2014 .

[39]  F. Bundy,et al.  A New Dense Form of Solid Germanium , 1963, Science.

[40]  T. Strobel,et al.  Synthesis of an open-framework allotrope of silicon. , 2015, Nature materials.

[41]  Gilbert W. Collins,et al.  GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA , 2011 .

[42]  J. Joannopoulos,et al.  Electronic Properties of Complex Crystalline and Amorphous Phases of Ge and Si. I. Density of States and Band Structures , 1973 .

[43]  Hui Wang,et al.  Tetragonal allotrope of group 14 elements. , 2012, Journal of the American Chemical Society.

[44]  A. Rode,et al.  Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface , 2014 .

[45]  Chris J Pickard,et al.  High-pressure phases of silane. , 2006, Physical review letters.

[46]  Chris J Pickard,et al.  Aluminium at terapascal pressures. , 2010, Nature materials.

[47]  E. Mazur,et al.  The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation , 2012 .

[48]  A. Rode,et al.  Transient optical properties of dielectrics and semiconductors excited by an ultrashort laser pulse , 2014 .

[49]  Gilbert W. Collins,et al.  Coupling static and dynamic compressions: first measurements in dense hydrogen , 2004 .