Parameter extraction of solar photovoltaic models via quadratic interpolation learning differential evolution

The parameter extraction problem of solar photovoltaic (PV) models is a highly nonlinear multimodal optimization problem. In this paper, quadratic interpolation learning differential evolution (QILDE) is proposed to solve it. Differential evolution (DE) is a preeminent metaheuristic algorithm with good exploration. However, its exploitation is poor, resulting in low searching precision when applied to the problem. To overcome this deficiency, in QILDE, quadratic interpolation (QI) is embedded in the crossover operation of DE to construct a QI learning-backup crossover operation to enhance the performance of DE. The mutation scheme of DE is primarily responsible for exploring the new search space while QI is mainly in charge of exploiting the local solution space around the best individual, which, therefore, can achieve a good trade-off between exploitation and exploration. QILDE is applied to six different PV cases. The experimental results demonstrate that QI coupled with the mutation scheme DE/best/2 can obtain superior results in solving the parameter extraction problem of PV models. Besides, compared with other advanced algorithms, QILDE shows highly competitive performance in terms of solution quality, extraction accuracy, robust stability, convergence property, computational time, and statistical significance. In addition, the current–voltage characteristics provided by QILDE agree well with the measured data for different PV models under different operating conditions.

[1]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[2]  Fabricio Bradaschia,et al.  Parameter Identification for PV Modules Based on an Environment-Dependent Double-Diode Model , 2019, IEEE Journal of Photovoltaics.

[3]  Salah Kamel,et al.  Photovoltaic Cells Parameter Estimation Using an Enhanced Teaching–Learning-Based Optimization Algorithm , 2020, Iranian Journal of Science and Technology, Transactions of Electrical Engineering.

[4]  Yu He,et al.  Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm , 2018, Energy Conversion and Management.

[5]  Jing Zhang,et al.  Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models , 2020 .

[6]  R. El-Sehiemy,et al.  An interval branch and bound global optimization algorithm for parameter estimation of three photovoltaic models , 2020 .

[7]  Seema Agrawal,et al.  Self organizing migrating algorithm with quadratic interpolation for solving large scale global optimization problems , 2016, Appl. Soft Comput..

[8]  Pierre Ele,et al.  Important notes on parameter estimation of solar photovoltaic cell , 2019, Energy Conversion and Management.

[9]  Jing J. Liang,et al.  Evolutionary multi-task optimization for parameters extraction of photovoltaic models , 2020 .

[10]  Gang Yao,et al.  Parameter extraction of solar photovoltaic models by means of a hybrid differential evolution with whale optimization algorithm , 2018, Solar Energy.

[11]  Xu Chen,et al.  A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module , 2019, Applied Energy.

[12]  Francisco Gordillo,et al.  Parameters identification of PV solar cells and modules using flexible particle swarm optimization algorithm , 2019, Energy.

[13]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[14]  Ali Wagdy Mohamed,et al.  Adaptive guided differential evolution algorithm with novel mutation for numerical optimization , 2017, International Journal of Machine Learning and Cybernetics.

[15]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[16]  Pierre Ele,et al.  Enhanced Vibrating Particles System Algorithm for Parameters Estimation of Photovoltaic System , 2019, Journal of Power and Energy Engineering.

[17]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[18]  Licheng Jiao,et al.  Quadratic interpolation based orthogonal learning particle swarm optimization algorithm , 2013, Natural Computing.

[19]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[20]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[21]  M. Hejri,et al.  On the Comprehensive Parametrization of the Photovoltaic (PV) Cells and Modules , 2017, IEEE Journal of Photovoltaics.

[22]  Hong-Bin Shen,et al.  A Nonhomogeneous Cuckoo Search Algorithm Based on Quantum Mechanism for Real Parameter Optimization , 2017, IEEE Transactions on Cybernetics.

[23]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[24]  Alain K. Tossa,et al.  A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions , 2014 .

[25]  Amit Kumar Das,et al.  A directional crossover (DX) operator for real parameter optimization using genetic algorithm , 2018, Applied Intelligence.

[26]  Jeyraj Selvaraj,et al.  Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation , 2015 .

[27]  Mingjing Wang,et al.  Orthogonal Nelder-Mead moth flame method for parameters identification of photovoltaic modules , 2020 .

[28]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[29]  Zainal Salam,et al.  A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells , 2019, Applied Energy.

[30]  Sirapat Chiewchanwattana,et al.  An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models , 2019, Renewable Energy.

[31]  Li Zhang,et al.  Hybrid differential evolution with a simplified quadratic approximation for constrained optimization problems , 2011 .

[32]  Radha Thangaraj,et al.  A New Differential Evolution Algorithm for Solving Global Optimization Problems , 2009, 2009 International Conference on Advanced Computer Control.

[33]  Chuanzhong Xu,et al.  A Particle-Swarm-Optimization-Based Parameter Extraction Routine for Three-Diode Lumped Parameter Model of Organic Solar Cells , 2019, IEEE Electron Device Letters.

[34]  Krishna Busawon,et al.  Wind-Driven Optimization Technique for Estimation of Solar Photovoltaic Parameters , 2018, IEEE Journal of Photovoltaics.

[35]  Rishabh Dev Shukla,et al.  A New Parameter Estimation Method of Solar Photovoltaic , 2018, IEEE Journal of Photovoltaics.

[36]  Jun Zhang,et al.  Genetic Learning Particle Swarm Optimization , 2016, IEEE Transactions on Cybernetics.

[37]  Bidyadhar Subudhi,et al.  Bacterial Foraging Optimization Approach to Parameter Extraction of a Photovoltaic Module , 2018, IEEE Transactions on Sustainable Energy.

[38]  Ramzi Ben Messaoud Extraction of uncertain parameters of single-diode model of a photovoltaic panel using simulated annealing optimization , 2020 .

[39]  Jing J. Liang,et al.  Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models , 2020 .

[40]  Wenyin Gong,et al.  An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models , 2020, Energy Conversion and Management.

[41]  M. Hanif,et al.  Gauss-Seidel iteration based parameter estimation for a single diode model of a PV module , 2015, 2015 IEEE Electrical Power and Energy Conference (EPEC).

[42]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[43]  Atulya K. Nagar,et al.  Interpolated differential evolution for global optimisation problems , 2010, Int. J. Comput. Sci. Math..

[44]  Hitesh K. Mehta,et al.  Accurate Expressions for Single-Diode-Model Solar Cell Parameterization , 2019, IEEE Journal of Photovoltaics.

[45]  Dina S. M. Osheba,et al.  Parameters extraction of photovoltaic sources based on experimental data , 2019, IET Renewable Power Generation.

[46]  Li Li,et al.  Phasor particle swarm optimization: a simple and efficient variant of PSO , 2018, Soft Computing.

[47]  Gang Yao,et al.  Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models , 2019, Remote. Sens..

[48]  Z. Salam,et al.  An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method , 2017, IEEE Transactions on Industrial Electronics.

[49]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[50]  T. Khatib,et al.  Extraction of photovoltaic module model's parameters using an improved hybrid differential evolution/electromagnetism-like algorithm , 2015 .

[51]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[52]  Y. Ramu Naidu,et al.  A hybrid version of invasive weed optimization with quadratic approximation , 2015, Soft Comput..

[53]  Xu Chen,et al.  Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters , 2019, Solar Energy.

[54]  Ming Xu,et al.  A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models , 2020, Energy Conversion and Management.

[55]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[56]  Xuesong Yan,et al.  Parameter estimation of photovoltaic models with memetic adaptive differential evolution , 2019, Solar Energy.

[57]  Yongjun Sun,et al.  A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems , 2019, Appl. Soft Comput..

[58]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[59]  Ahmed A. Zaki Diab,et al.  Coyote Optimization Algorithm for Parameters Estimation of Various Models of Solar Cells and PV Modules , 2020, IEEE Access.

[60]  Changcheng Huang,et al.  Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models , 2020 .

[61]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[62]  José M. Blanes,et al.  System-on-Chip for Real-Time Satellite Photovoltaic Curves Telemetry , 2018, IEEE Transactions on Industrial Informatics.

[63]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[64]  Jing J. Liang,et al.  Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution , 2020 .

[65]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[66]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[67]  Bin Xu,et al.  Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization , 2018, Knowl. Based Syst..

[68]  Ponnuthurai Nagaratnam Suganthan,et al.  Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm , 2019, Renewable Energy.

[69]  Kusum Deep,et al.  Quadratic approximation based hybrid genetic algorithm for function optimization , 2008, Appl. Math. Comput..

[70]  Rachida Abounacer,et al.  Parameters identification of photovoltaic solar cells and module using the genetic algorithm with convex combination crossover , 2019 .

[71]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[72]  A. Chatterjee,et al.  Identification of Photovoltaic Source Models , 2011, IEEE Transactions on Energy Conversion.