Convergence of Conditional Expectations for Unbounded Random Sets, Integrands, and Integral Functionals

Given a sequence of unbounded convex random sets, we study under which conditions Fatou's lemma for the weak upper limit of their conditional expectations holds. We also give multivalued versions of dominated and monotone convergence theorems, and we discuss the special case of the integral. Finally, applications to epigraphic convergence of integrands and to Mosco convergence of certain integral functionals are provided.

[1]  David Schmeidler,et al.  Fatou’s lemma in several dimensions , 1970 .

[2]  Patrizia Pucci,et al.  A representation theorem for Aumann integrals , 1984 .

[3]  Erik J. Balder,et al.  A Unifying Note on Fatou's Lemma in Several Dimensions , 1984, Math. Oper. Res..

[4]  R. Wijsman Convergence of sequences of convex sets, cones and functions. II , 1966 .

[5]  Roger J.-B. Wets,et al.  Approximating the integral of a multifunction , 1988 .

[6]  Werner Hildenbrand,et al.  On Fatou's Lemma in several dimensions , 1971 .

[7]  C. Castaing,et al.  Convex analysis and measurable multifunctions , 1977 .

[8]  Zvi Artstein,et al.  A note on fatou's lemma in several dimensions , 1979 .

[9]  I. V. Evstigneev,et al.  Regular Conditional Expectations of Correspondences , 1977 .

[10]  J. Bismut,et al.  Intégrales convexes et probabilités , 1973 .

[11]  Zvi Artstein Weak Convergence of Set-Valued Functions and Control , 1975 .

[12]  Erik J. Balder,et al.  Fatou's lemma in infinite dimensions , 1988 .

[13]  Zheng Wei-an A note on the convergence of sequences of conditional expectations of random variables , 1980 .

[14]  Nikolaos S. Papageorgiou Convergence theorems for Banach space valued integrable multifunctions. , 1987 .

[15]  Czeslaw Olech Onn-dimensional extensions of Fatou's lemma , 1987 .

[16]  C. Hess Sur la mesurabilité des multifonctions à valeurs localement faiblement compactes sans droite , 1987 .

[17]  Nicholas C. Yannelis,et al.  Fatou’s lemma in infinite-dimensional spaces , 1988 .

[18]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[19]  Michel Valadier Sur l'espérance conditionnelle multivoque non convexe , 1980 .

[20]  C. Hess,et al.  Théorème de la convergence dominée pour l'intégrale et l'espérance conditionnelle des ensembles aléatoires non bornés et des intégrandes , 1988 .

[21]  W. Hildenbrand Core and Equilibria of a Large Economy. , 1974 .

[22]  Lamberto Cesari,et al.  An existence theorem for pareto problems , 1978 .

[23]  Mukul Majumdar,et al.  Weak sequential convergence in L1(μ, X) and an approximate version of Fatou's Lemma , 1986 .

[24]  M. Tsukada Convergence of best approximations in a smooth Banach space , 1984 .

[25]  R. Tyrrell Rockafellar,et al.  Convex Integral Functionals and Duality , 1971 .

[26]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[27]  H. Attouch Variational convergence for functions and operators , 1984 .

[28]  Fumio Hiai,et al.  Convergence of conditional expectations and strong laws of large numbers for multivalued random variables , 1985 .

[29]  Christian Hess,et al.  Measurability and integrability of the weak upper limit of a sequence of multifunctions , 1990 .

[30]  F. Hiai,et al.  Integrals, conditional expectations, and martingales of multivalued functions , 1977 .

[31]  Erik J. Balder More on Fatou's Lemma in Several Dimensions , 1987, Canadian Mathematical Bulletin.

[32]  Kai Lai Chung,et al.  A Course in Probability Theory , 1949 .

[33]  R. Wijsman Convergence of sequences of convex sets, cones and functions , 1964 .