Protein and peptide secondary structure and conformational determination with vibrational circular dichroism.

Vibrational circular dichroism (VCD) provides alternative views of protein and peptide conformation with advantages over electronic (UV) CD (ECD) or IR spectroscopy. VCD is sensitive to short-range order, allowing it to discriminate beta-sheet and various helices as well as disordered structure. Quantitative secondary structure analyses use protein VCD bandshapes, but are best combined with ECD and IR for balance. Much recent work has focused on empirical and theoretical VCD analyses of peptides, with detailed prediction of helix, sheet and hairpin spectra and site-specific application of isotopic substitution for structure and folding.

[1]  Y. Kyōgoku,et al.  WHAT IS THE CRUCIAL FACTOR FOR VIBRATIONAL CIRCULAR DICHROISM IN HEMOPROTEIN LIGANDS , 1996 .

[2]  V. Muñoz,et al.  Interplay between hydrophobic cluster and loop propensity in beta-hairpin formation. , 2001, Journal of molecular biology.

[3]  T. Keiderling,et al.  Novel Use of a Static Modification of Two-Dimensional Correlation Analysis. Part I: Comparison of the Secondary Structure Sensitivity of Electronic Circular Dichroism, FT-IR, and Raman Spectra of Proteins , 1999 .

[4]  T. Keiderling,et al.  Vibrational circular dichroism spectroscopy of selected oligopeptide conformations. , 1999, Bioorganic & medicinal chemistry.

[5]  Rebecca C. Wade,et al.  L-Alanyl-L-alanine in the zwitterionic state: structures determined in the presence of explicit water molecules and with continuum models using density functional theory , 1999 .

[6]  P. Balaram,et al.  Vibrational Circular Dichroism of -Hairpin Peptides , 2000 .

[7]  Urbanová,et al.  Measurements of concentration dependence and enantiomeric purity of terpene solutions as a test of a new commercial VCD spectrometer , 2000, Chirality.

[8]  T. Keiderling,et al.  Spectroscopic characterization of selected β- sheet hairpin models , 2002 .

[9]  G. Millhauser,et al.  α and 310: The Split Personality of Polypeptide Helices , 1999 .

[10]  M. Diem,et al.  Conformational studies of .beta.-turns in cyclic peptides by vibrational circular dichroism. , 1995 .

[11]  Timothy A. Keiderling,et al.  Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra , 1997 .

[12]  S. Venyaminov,et al.  Determination of Protein Secondary Structure , 1996 .

[13]  Y. Kyōgoku,et al.  Conformational study on poly[?-(?-phenethyl)-L-glutamate] using vibrational circular dichroism spectroscopy , 2001 .

[14]  H. Gremlich,et al.  Infrared and Raman Spectroscopy of Biological Materials , 2000 .

[15]  Thomas Frauenheim,et al.  Hybrid SCC-DFTB/molecular mechanical studies of H-bonded systems and ofN-acetyl-(L-Ala)nN?-methylamide helices in water solution , 2000 .

[16]  C. Toniolo,et al.  Conformational Characterization of Terminally Blocked l-(αMe)Val Homopeptides Using Vibrational and Electronic Circular Dichroism. 310-Helical Stabilization by Peptide−Peptide Interaction , 1997 .

[17]  V. Král,et al.  Noncovalent interactions of peptides with porphyrins in aqueous solution: conformational study using vibrational CD spectroscopy. , 2001, Biopolymers.

[18]  P. Stephens,et al.  Structure, Vibrational Absorption and Circular Dichroism Spectra, and Absolute Configuration of Tröger's Base , 2000 .

[19]  T. Keiderling,et al.  Unfolded peptides and proteins studied with infrared absorption and vibrational circular dichroism spectra. , 2002, Advances in protein chemistry.

[20]  J. Antonic,et al.  Isotope-Edited Infrared Spectroscopy of Helical Peptides , 1999 .

[21]  M. Sisido,et al.  Vibrational circular dichroism of polypeptides. 11. Conformation of poly(L-Z-lysine-L-Z-lysine-L-1-pyrenylalanine) and poly(L-Z-lysine-L-Z-lysine-L-1-naphthylalanine) in solution , 1987 .

[22]  P. Polavarapu Double Polarization Modulation Interferometry , 1997 .

[23]  S. Gellman Minimal model systems for β-sheet secondary structure in proteins , 1998 .

[24]  S Suhai,et al.  Neural-network analysis of the vibrational spectra of N-acetyl L-alanyl N'-methyl amide conformational states. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  W. C. Johnson,et al.  Analyzing protein circular dichroism spectra for accurate secondary structures , 1999, Proteins.

[26]  T. Keiderling,et al.  Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O. , 1996, Journal of molecular biology.

[27]  R. L. Baldwin,et al.  Comparison of NH exchange and circular dichroism as techniques for measuring the parameters of the helix-coil transition in peptides. , 1997, Biochemistry.

[28]  M. Diem,et al.  Measurement of Dispersive Vibrational Circular Dichroism: Signal Optimization and Artifact Reduction , 1996 .

[29]  T. Keiderling,et al.  Reassessment of the random coil conformation: Vibrational CD study of proline oligopeptides and related polypeptides , 1991, Biopolymers.

[30]  G. Fasman Circular Dichroism and the Conformational Analysis of Biomolecules , 1996, Springer US.

[31]  N. Berova,et al.  Circular Dichroism: Principles and Applications , 1994 .

[32]  Sándor Suhai,et al.  N-Acetyl-L-alanine N'-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra , 1996 .

[33]  P. Stephens,et al.  Determination of the structure of chiral molecules using ab initio vibrational circular dichroism spectroscopy. , 2000, Chirality.

[34]  T. Keiderling,et al.  Polarization Modulation Fourier Transform Infrared Spectroscopy with Digital Signal Processing: Comparison of Vibrational Circular Dichroism Methods , 2001 .

[35]  T. Keiderling,et al.  Novel Use of a Static Modification of Two-Dimensional Correlation Analysis. Part II: Hetero-Spectral Correlations of Protein Raman, FT-IR, and Circular Dichroism Spectra , 1999 .

[36]  T. Keiderling,et al.  Novel matrix descriptor for secondary structure segments in proteins: demonstration of predictability from circular dichroism spectra. , 1999, Analytical biochemistry.

[37]  T. Keiderling,et al.  Enhanced prediction accuracy of protein secondary structure using hydrogen exchange Fourier transform infrared spectroscopy. , 2000, Analytical biochemistry.

[38]  L. Nafie Dual Polarization Modulation: A Real-Time, Spectral-Multiplex Separation of Circular Dichroism from Linear Birefringence Spectral Intensities , 2000 .

[39]  N. Sreerama,et al.  Estimation of the number of α‐helical and β‐strand segments in proteins using circular dichroism spectroscopy , 2008, Protein science : a publication of the Protein Society.

[40]  T. Keiderling,et al.  Ab Initio Calculation of Amide Carbonyl Stretch Vibrational Frequencies in Solution with Modified Basis Sets. 1. N-Methyl Acetamide , 2001 .

[41]  J. Torres,et al.  Site‐specific examination of secondary structure and orientation determination in membrane proteins: The peptidic 13C18O group as a novel infrared probe , 2001, Biopolymers.

[42]  Protein structural segments and their interconnections derived from optical spectra. Thermal unfolding of ribonuclease T1 as an example. , 1996, Biochemistry.

[43]  J. M. Hicks Chirality : physical chemistry , 2002 .

[44]  Samuel Krimm,et al.  The Circular Dichroism Spectrum and Structure of Unordered Polypeptides and Proteins , 1974 .

[45]  T. Keiderling,et al.  The anomalous infrared amide I intensity distribution in (13)C isotopically labeled peptide beta-sheets comes from extended, multiple-stranded structures: an ab initio study. , 2001, Journal of the American Chemical Society.

[46]  D. Batens,et al.  Theory and Experiment , 1988 .

[47]  Tom Muir,et al.  Length-dependent stability and strand length limits in antiparallel β-sheet secondary structure , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Keiderling,et al.  Vibrational circular dichroism of polypeptides. VI. polytyrosine α‐helical and random‐coil results , 1986, Biopolymers.

[49]  L. Barron,et al.  Vibrational Raman optical activity: from fundamentals to biochemical applications , 1994 .

[50]  W C Johnson,et al.  Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. , 1992, Analytical biochemistry.

[51]  P. Polavarapu,et al.  Temperature Influence on the Secondary Structure of Avidin and Avidin−Biotin Complex: A Vibrational Circular Dichroism Study , 2001 .

[52]  P. Bouř,et al.  Simulations of oligopeptide vibrational CD: Effects of isotopic labeling , 2000, Biopolymers.

[53]  Hirotoshi Ito Linear response polarizability bandshape calculations of vibrational circular dichroism, vibrational absorption, and electronic circular dichroism of cyclo(Gly‐Pro‐Gly‐D‐Ala‐Pro): A small cyclic pentapeptide having β‐ and γ‐turns , 1998 .

[54]  T. Keiderling,et al.  Comparison of and limits of accuracy for statistical analyses of vibrational and electronic circular dichroism spectra in terms of correlations to and predictions of protein secondary structure , 1995, Protein science : a publication of the Protein Society.

[55]  T. Keiderling,et al.  Discrimination between Peptide 310- and α-Helices. Theoretical Analysis of the Impact of α-Methyl Substitution on Experimental Spectra , 2002 .

[56]  T. Keiderling,et al.  Characterization of alanine-rich peptides, Ac-(AAKAA)n-GY-NH2 (n = 1-4), using vibrational circular dichroism and Fourier transform infrared. Conformational determination and thermal unfolding. , 1997, Biochemistry.

[57]  L. Nafie,et al.  Comparison of IR and Raman forms of vibrational optical activity. , 1994, Faraday discussions.

[58]  T. Keiderling,et al.  Differentiation of β-Sheet-Forming Structures: Ab Initio-Based Simulations of IR Absorption and Vibrational CD for Model Peptide and Protein β-Sheets , 2001 .

[59]  P. Bouř,et al.  ChemInform Abstract: Chirality in Peptide Vibrations: ab initio Computational Studies of Length, Solvation, Hydrogen Bond, Dipole Coupling, and Isotope Effects on Vibrational CD. , 2002 .

[60]  P. Bouř,et al.  Site-specific conformational determination in thermal unfolding studies of helical peptides using vibrational circular dichroism with isotopic substitution. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Toniolo,et al.  Vibrational circular dichroism of polypeptides, V. A study of 310‐helical‐octapeptides , 1986, Biopolymers.

[62]  Henry H. Mantsch,et al.  Infrared spectroscopy of biomolecules , 1996 .

[63]  P. Bouř,et al.  Ab Initio Simulations of the Vibrational Circular Dichroism of Coupled Peptides , 1993 .

[64]  T. Keiderling,et al.  Vibrational optical activity of oligopeptides , 1995, Biopolymers.

[65]  T. Keiderling,et al.  Vibrational circular dichroism spectra of proteins in the amide III region: measurement and correlation of bandshape to secondary structure. , 1997, Analytical biochemistry.

[66]  M. Diem,et al.  Conformational Studies of Cyclo-(-Pro-Gly-)3 and Its Complexes with Cations by Vibrational Circular Dichroism , 1995 .

[67]  P. Polavarapu,et al.  Vibrational circular dichroism of gramicidin D in vesicles and micelles. , 2001, Biopolymers.