A Wideband PLL-Based G/FSK Transmitter in 0.18 $\mu$m CMOS

A wideband phase-locked loop (PLL)-based G/FSK transmitter (TX) architecture is presented in this paper. In the proposed TX, the G/FSK data is applied outside the loop; hence, the data rate is not constrained by the PLL bandwidth. In addition, the PLL remains locked all the time, preventing the carrier frequency from drifting. In this architecture, the G/FSK modulation signal is generated from a proposed sigma-delta modulated phase rotator (¿¿-PR). By properly combining the multi-phase signals from the PLL output, the ¿¿-PR effectively operates as a fractional frequency divider, which can synthesize modulation signals with fine-resolution frequencies. The proposed ¿¿-PR adopts the input signal as the phase transition trigger, facilitating a glitch-free operation. The impact of the ¿¿-PR on the TX output noise is also analyzed in this paper. The proposed TX with the ¿¿-PR is digitally programmable and can generate various G/FSK signals for different applications. Fabricated in a 0.18 ¿m CMOS technology, the proposed TX draws 6.3 mA from a 1.4 V supply, and delivers an output power of -11 dBm. With a maximum data rate of 6 Mb/s, the TX achieves an energy efficiency of 1.5 nJ/bit.

[1]  Tsung-Hsien Lin,et al.  A 3.5-mW 15-Mbps O-QPSK transmitter for real-time wireless medical imaging applications , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[2]  Yao-Hong Liu,et al.  An energy-efficient 1.5-Mbps wireless FSK transmitter with A ∑Δ-modulated phase rotator , 2007, ESSCIRC 2007 - 33rd European Solid-State Circuits Conference.

[3]  Ook Kim,et al.  A 1.8-GHz self-calibrated phase-locked loop with precise I/Q matching , 2001, IEEE J. Solid State Circuits.

[4]  Chun-Huat Heng,et al.  A 1.8-GHz CMOS fractional-N frequency synthesizer with randomized multiphase VCO , 2003 .

[5]  M. Cloutier,et al.  A 43mW Bluetooth transceiver with -91dBm sensitivity , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[6]  M.H. Perrott,et al.  A 27 mW CMOS fractional-N synthesizer/modulator IC , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[7]  A. Jerng,et al.  A Wideband ΔΣ Digital-RF Modulator for High Data Rate Transmitters , 2007, IEEE Journal of Solid-State Circuits.

[8]  Jan Craninckx,et al.  A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-/spl mu/m CMOS , 1996 .

[9]  W. P. Robins,et al.  Phase Noise in Signal Sources , 1984 .

[10]  Kartikeya Mayaram,et al.  A 900-MHz low-power transmitter with fast frequency calibration for wireless sensor networks , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[11]  Mitchell D. Trott,et al.  A modeling approach for ΣΔ fractional-N frequency synthesizers allowing straightforward noise analysis , 2002, IEEE J. Solid State Circuits.

[12]  M. Elmasry,et al.  A wideband sigma-delta phase-locked-loop modulator for wireless applications , 2003, IEEE Trans. Circuits Syst. II Express Briefs.

[13]  R.B. Staszewski,et al.  A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones , 2005, IEEE Journal of Solid-State Circuits.

[14]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[15]  Behzad Razavi A Modeling Approach for ¿¿ FractionalN Frequency Synthesizers Allowing Straightforward Noise Analysis , 2003 .

[16]  Zvonko G. Vranesic,et al.  Fundamentals of Digital Logic with VHDL Design , 2008 .

[17]  K. Pister,et al.  An Ultra-Low Power 2 . 4 GHz RF Transceiver for Wireless Sensor Networks in 0 . 13 μ m CMOS with 400 mV Supply and an Integrated Passive RX Front-End , 2006 .