Exploiting the maximum entropy principle to increase retrieval effectiveness
暂无分享,去创建一个
[1] William S. Cooper,et al. Foundations of Probabilistic and Utility-Theoretic Indexing , 1978, JACM.
[2] Don R. Swanson,et al. A decision theoretic foundation for indexing , 1975, J. Am. Soc. Inf. Sci..
[3] Donald H. Kraft,et al. Operations Research Applied to Document Indexing and Retrieval Decisions , 1977, JACM.
[4] C. J. van Rijsbergen,et al. An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.
[5] Van Rijsbergen,et al. A theoretical basis for the use of co-occurence data in information retrieval , 1977 .
[6] S. Kullback,et al. The Information in Contingency Tables , 1980 .
[7] I. Good. Maximum Entropy for Hypothesis Formulation, Especially for Multidimensional Contingency Tables , 1963 .
[8] Stephen P. Harter,et al. A probabilistic approach to automatic keyword indexing. Part I. On the Distribution of Specialty Words in a Technical Literature , 1975, J. Am. Soc. Inf. Sci..
[9] Clement T. Yu,et al. Automatic indexing using term discrimination and term precision measurements , 1976, Information Processing & Management.
[10] Don R. Swanson,et al. Probabilistic models for automatic indexing , 1974, J. Am. Soc. Inf. Sci..
[11] Gerard Salton,et al. Automatic Information Organization And Retrieval , 1968 .
[12] Stephen E. Robertson,et al. Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..
[13] Philip M. Lewis,et al. Approximating Probability Distributions to Reduce Storage Requirements , 1959, Information and Control.