A New Simple Method to Determine Crop Coefficients for Water Allocation Planning from Satellites: Results from Kenya

Crop coefficient Kc is defined as theratio of crop potential and grass referenceevapotranspiration. This paper discussesthe estimation of crop potentialevapotranspiration from remote sensing datato deduce spatial variable and regionalscale crop coefficients. Maps of cropcoefficients avoid the need to frequentlyuse remote sensing data because grassreference evapotranspiration obtained fromroutine weather data describe the shorterterm day-to-day variation. The new methodis based on the simplified Priestley &Taylor equation for cropevapotranspiration. It is argued that thisis justified for humid conditions and thecalculation procedure is validated withfield data collected from irrigatedvegetables in Kenya. The method isthereafter applied to Landsat-TM satellitedata covering the Lake Naivasha Basin,Kenya, and the spatially variable cropcoefficients are determined. This simpletechnique improves the planning ofirrigation water resources because Kcestimations based on satellite imagesreveal the real agricultural practicesbetter than expected acreage data andtabulated Kc-values published in theinternational literature.

[1]  C. Neale,et al.  Mapping field crop evapotranspiration using airborne multispectral imagery , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[2]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[3]  H. D. Bruin,et al.  A Model for the Priestley-Taylor Parameter , 1983 .

[4]  M. Budyko The heat balance of the earth's surface , 1958 .

[5]  P. R. Owen,et al.  Heat transfer across rough surfaces , 1963, Journal of Fluid Mechanics.

[6]  James L. Wright,et al.  New Evapotranspiration Crop Coefficients , 1982 .

[7]  Craig S. T. Daughtry,et al.  Estimation of the soil heat flux/net radiation ratio from spectral data , 1990 .

[8]  W. Bastiaanssen,et al.  Simulation of the water balance in relation to crop water requirements in (semi) arid zones , 1993 .

[9]  B. Itier,et al.  Operational limits to the Priestley-Taylor formula , 1996, Irrigation Science.

[10]  J. Doorenbos,et al.  Guidelines for predicting crop water requirements , 1977 .

[11]  W. Bausch Remote sensing of crop coefficients for improving the irrigation scheduling of corn , 1995 .

[12]  T. W. Spriggs,et al.  An evaluation of the Priestley and Taylor equation and the complementary relationship using results from a mixed-layer model of the convective boundary layer , 1989 .

[13]  V. Petit,et al.  Utilisation de la thermographie IR pour l'estimation de l'évaporation régionale I. Mise au point méthodologique sur le site de la Crau , 1982 .

[14]  Asad Sarwar,et al.  Devaluating Drainage Design Parameters for the Fourth Drainage Project, Pakistan by using SWAP Model: Part I – Calibration , 2000 .

[15]  John L. Monteith,et al.  A four-layer model for the heat budget of homogeneous land surfaces , 1988 .

[16]  J. Hatfield,et al.  Wheat Canopy Resistance Determined by Energy Balance Techniques1 , 1985 .

[17]  N. Bink The structure of the atmospheric surface layer subject to local advection , 1996 .

[18]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[19]  N. U. Ahmed,et al.  Relations between evaporation coefficients and vegetation indices studied by model simulations , 1994 .

[20]  Jean L. Steiner,et al.  Bowen ratio, eddy correlation, and portable chamber measurements of sensible and latent heat flux over irrigated spring wheat* , 1991 .

[21]  W. James Shuttleworth,et al.  Measurement and modelling evaporation for irrigated crops in north‐west Mexico , 1998 .

[22]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .