On edge irregularity strength of graphs

For a simple graph G, a vertex labeling @f:V(G)->{1,2,...,k} is called k-labeling. The weight of an edge xy in G, denoted by w"@f(xy), is the sum of the labels of end vertices x and y, i.e. w"@f(xy)=@f(x)+@f(y). A vertex k-labeling is defined to be an edge irregular k-labeling of the graph G if for every two different edges e and f there is w"@f(e) w"@f(f). The minimum k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, denoted by es(G). In this paper, we estimate the bounds of the edge irregularity strength and determine the exact value for several families of graphs.

[1]  Olivier Togni,et al.  Irregularity strength of trees , 1998, Discret. Math..

[2]  Tom Bohman,et al.  On the irregularity strength of trees , 2004 .

[3]  Jakub Przybylo,et al.  A new upper bound for the total vertex irregularity strength of graphs , 2009, Discret. Math..

[4]  Jakub Przybylo,et al.  Total Vertex Irregularity Strength of Dense Graphs , 2014, J. Graph Theory.

[5]  Muhammad Kamran Siddiqui,et al.  On the total edge irregularity strength of hexagonal grid graphs , 2012, Australas. J Comb..

[6]  Cory Palmer,et al.  Irregular labelings of circulant graphs , 2012, Discret. Math..

[7]  Florian Pfender,et al.  A New Upper Bound for the Irregularity Strength of Graphs , 2011, SIAM J. Discret. Math..

[8]  Khandoker Mohammed Mominul Haque Irregular Total Labellings of Generalized Petersen Graphs , 2011, Theory of Computing Systems.

[9]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[10]  Richard H. Schelp,et al.  Irregular networks, regular graphs and integer matrices with distinct row and column sums , 1989, Discret. Math..

[11]  Muhammad Kamran Siddiqui,et al.  Total edge irregularity strength of strong product of two paths , 2012, Ars Comb..

[12]  Jakub PrzybyŁo Linear Bound on the Irregularity Strength and the Total Vertex Irregularity Strength of Graphs , 2008 .

[13]  Stanislav Jendrol',et al.  Total edge irregularity strength of trees , 2006, Discuss. Math. Graph Theory.

[14]  Muhammad Kamran Siddiqui,et al.  Total edge irregularity strength of generalized prism , 2014, Appl. Math. Comput..

[15]  Stanislav Jendrol',et al.  On irregular total labellings , 2007, Discret. Math..

[16]  Muhammad Kamran Siddiqui,et al.  On Edge Irregular Total Labeling of Categorical Product of Two Cycles , 2013, Theory of Computing Systems.

[17]  Edy Tri Baskoro,et al.  On the total vertex irregularity strength of trees , 2010, Discret. Math..

[18]  Florian Pfender,et al.  On graph irregularity strength , 2002 .

[19]  Stanislav Jendrol',et al.  Total edge irregularity strength of complete graphs and complete bipartite graphs , 2010, Discret. Math..

[20]  Piotr Majerski,et al.  On the Irregularity Strength of Dense Graphs , 2014, SIAM J. Discret. Math..

[21]  Marcin Anholcer Irregular Labellings of Circulant Graphs , 2011 .

[22]  Eberhard Triesch,et al.  Irregular Assignments of Trees and Forests , 1990, SIAM J. Discret. Math..