STRONG COMPLETENESS OF MODAL LOGICS OVER 0-DIMENSIONAL METRIC SPACES

We prove strong completeness results for some modal logics with the universal modality, with respect to their topological semantics over 0-dimensional dense-in-themselves metric spaces. We also use failure of compactness to show that, for some languages and spaces, no standard modal deductive system is strongly complete.

[1]  Andrey Kudinov,et al.  Topological Modal Logics with Difference Modality , 2006, Advances in Modal Logic.

[2]  Alberto Gatto Studies on modal logics of time and space , 2016 .

[3]  Steven Givant,et al.  Introduction to Boolean algebras. Undergraduate Texts in Mathematics , 2010 .

[4]  Spencer Gerhardt,et al.  A Construction Method for Modal Logics of Space , 2005 .

[5]  Robert Goldblatt,et al.  The Finite Model Property for Logics with the Tangle Modality , 2018, Stud Logica.

[6]  Robert Goldblatt,et al.  Spatial logic of tangled closure operators and modal mu-calculus , 2017, Ann. Pure Appl. Log..

[7]  Steven Givant,et al.  Introduction to Boolean Algebras , 2008 .

[8]  Robert Goldblatt,et al.  The Tangled Derivative Logic of the Real Line and Zero-Dimensional Space , 2016, Advances in Modal Logic.

[9]  L. E. J. Brouwer,et al.  On the structure of perfect sets of points , 1909 .

[10]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[11]  A. Tarski Der Aussagenkalkül und die Topologie , 1938 .

[12]  Jörg Flum,et al.  Topological Model Theory , 1980 .

[13]  Guram Bezhanishvili,et al.  MODAL LOGICS OF METRIC SPACES , 2014, The Review of Symbolic Logic.

[14]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[15]  A. H. Stone Paracompactness and product spaces , 1948 .

[16]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[17]  John L. Bell,et al.  Models and Ultraproducts: An Introduction. , 1969 .

[18]  Nitakshi Goyal,et al.  General Topology-I , 2017 .

[19]  Andrey Kudinov,et al.  Derivational Modal Logics with the Difference Modality , 2014, 1405.6700.

[20]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[21]  Philip Kremer,et al.  STRONG COMPLETENESS OF S4 FOR ANY DENSE-IN-ITSELF METRIC SPACE , 2013, The Review of Symbolic Logic.