An HLL Riemann solver for the hybridised discontinuous Galerkin formulation of compressible flows

This work proposes a high-order hybridised discontinuous Galerkin (HDG) formulation of the Harten-Lax-Van Leer (HLL) Riemann solver for compressible flows. A unified framework is introduced to present Lax-Friedrichs, Roe and HLL Riemann solvers via appropriate definitions of the HDG numerical fluxes. The resulting high-order HDG method with HLL Riemann solver is evaluated through a set of numerical simulations of inviscid compressible flows in different regimes, from subsonic isentropic flows to transonic and supersonic problems with shocks. The accuracy of the proposed method is comparable with the one of Lax-Friedrichs and Roe numerical fluxes in subsonic and transonic flows. The superior performance of HLL is highlighted in supersonic cases, where the method provides extra robustness, being able to produce positivity preserving approximations without the need of any user-defined entropy fix.

[1]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) Formulation for Incompressible Flow Problems , 2019, ArXiv.

[2]  Weifeng Qiu,et al.  A superconvergent HDG method for the Incompressible Navier-Stokes Equations on general polyhedral meshes , 2015, 1506.07543.

[3]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[4]  Nikolaus A. Adams,et al.  A low dissipation method to cure the grid-aligned shock instability , 2020, J. Comput. Phys..

[5]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[6]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[7]  J. W. Boerstoel,et al.  Test Cases for Inviscid Flow Field Methods. , 1985 .

[8]  Antonio Huerta,et al.  Tutorial on Hybridizable Discontinuous Galerkin (HDG) for second-order elliptic problems , 2016 .

[9]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[10]  Gianfranco Chiocchia Chapter 4: Exact solutions to transonic and supersonic flows , 1984 .

[11]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[12]  Hrvoje Jasak,et al.  OpenFOAM: Open source CFD in research and industry , 2009 .

[13]  Spencer J. Sherwin,et al.  On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence , 2017, J. Comput. Phys..

[14]  Bernardo Cockburn,et al.  A Hybridizable Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2010, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.

[15]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[16]  Antonio Huerta,et al.  Discontinuous Galerkin methods for the Stokes equations using divergence‐free approximations , 2008 .

[17]  R. Cárdenas NURBS-Enhanced Finite Element Method (NEFEM) , 2009 .

[18]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part I: The Stokes System in Two Space Dimensions , 2005, SIAM J. Numer. Anal..

[19]  Ngoc Cuong Nguyen,et al.  The hybridized Discontinuous Galerkin method for Implicit Large-Eddy Simulation of transitional turbulent flows , 2017, J. Comput. Phys..

[20]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[21]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[22]  F. Chalot,et al.  Higher-Order Stabilized Finite Elements in an Industrial Navier-Stokes Code , 2010 .

[23]  S. Rebay,et al.  Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations , 2002 .

[24]  K. A. Sørensen,et al.  A multigrid accelerated hybrid unstructured mesh method for 3D compressible turbulent flow , 2003 .

[25]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[26]  Herbert Egger,et al.  A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems , 2010 .

[27]  D. Drikakis Advances in turbulent flow computations using high-resolution methods , 2003 .

[28]  Sofiane Khelladi,et al.  Accuracy assessment of a high-order moving least squares finite volume method for compressible flows , 2013 .

[29]  Bernardo Cockburn,et al.  A Characterization of Hybridized Mixed Methods for Second Order Elliptic Problems , 2004, SIAM J. Numer. Anal..

[30]  Bernardo Cockburn,et al.  Devising discontinuous Galerkin methods for non-linear hyperbolic conversation laws , 2001 .

[31]  Antonio Huerta,et al.  Hybridizable Discontinuous Galerkin with degree adaptivity for the incompressible Navier-Stokes equations ✩ , 2014 .

[32]  Bernardo Cockburn,et al.  An Embedded Discontinuous Galerkin Method for the Compressible Euler and Navier-Stokes Equations , 2011 .

[33]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[34]  S. Imlay,et al.  Blunt-body flow simulations , 1988 .

[35]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[36]  Tan Bui-Thanh,et al.  From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations , 2015, J. Comput. Phys..

[37]  Ruben Sevilla,et al.  Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity , 2019, SN Applied Sciences.

[38]  Lilia Krivodonova,et al.  High-order accurate implementation of solid wall boundary conditions in curved geometries , 2006 .

[39]  A. J. Gil,et al.  A high-order stabilised ALE finite element formulation for the Euler equations on deformable domains , 2017 .

[40]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[41]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[42]  D. M. Williams,et al.  An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier-Stokes equations , 2017, Math. Comput..

[43]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[44]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[45]  Bernardo Cockburn,et al.  Incompressible Finite Elements via Hybridization. Part II: The Stokes System in Three Space Dimensions , 2005, SIAM J. Numer. Anal..

[46]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[47]  Ngoc Cuong Nguyen,et al.  Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics , 2012, J. Comput. Phys..

[48]  Antonio Huerta,et al.  NURBS‐enhanced finite element method for Euler equations , 2008 .

[49]  Per-Olof Persson,et al.  Shock Capturing for High-Order Discontinuous Galerkin Simulation of Transient Flow Problems , 2013 .

[50]  Thomas Gerhold,et al.  Overview of the Hybrid RANS Code TAU , 2005 .

[51]  Oubay Hassan,et al.  An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows , 2013 .

[52]  Chi-Wang Shu,et al.  A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes , 2006, J. Comput. Phys..

[53]  Jochen Schütz,et al.  A hybrid mixed method for the compressible Navier-Stokes equations , 2013, J. Comput. Phys..

[54]  Antonio Huerta,et al.  One‐dimensional shock‐capturing for high‐order discontinuous Galerkin methods , 2013 .

[55]  Antonio Huerta,et al.  A simple shock‐capturing technique for high‐order discontinuous Galerkin methods , 2012 .

[56]  J. Peraire,et al.  Efficiency of high‐order elements for continuous and discontinuous Galerkin methods , 2013 .

[57]  Francesco Bassi,et al.  Accurate 2D Euler computations by means of a high order discontinuous finite element method , 1995 .

[58]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[59]  John A. Ekaterinaris,et al.  High-order accurate, low numerical diffusion methods for aerodynamics , 2005 .

[60]  Michael Woopen,et al.  A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow , 2013, ArXiv.

[61]  Jaime Peraire,et al.  An Adaptive Shock-Capturing HDG Method for Compressible Flows , 2011 .

[62]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations , 2011, J. Comput. Phys..

[63]  Spencer J. Sherwin,et al.  Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods , 2015, J. Comput. Phys..