THE PROBLEM OF VARIABLE SELECTION FOR FINANCIAL DISTRESS: APPLYING GRASP METAHEURISTICS

We use GRASP strategies to solve the problem of selecting financial ratios to model and predict business failure. As a previous step, we use the GRASP procedure to select a subset of financial ratios that are then used to estimate a model of logistic regression to anticipate finanical distress on a sample of Spanish firms. The algorithm we suggest is designed “ad-hoc” for this type of variables. Reducing dimensionality has several advantages (Inza et al. 2000) such as reducing the cost of data acquisition, bette r understanding of the final classification model, and increasing the efficiency and the efficacy. The application of t he GRASP procedure t o preselect a reduced subset of financial ratios g enerated better results than those obtained directly by applying a model of logistic regression to the set of the 141 original financial ratios.

[1]  Szymon Jaroszewicz,et al.  The Goodman-Kruskal coefficient and its applications in genetic diagnosis of cancer , 2004, IEEE Transactions on Biomedical Engineering.

[2]  Cecilio Mar Molinero,et al.  Predicting Corporate Failure in the UK: A Multidimensional Scaling Approach , 2004 .

[3]  M. Tada,et al.  Gene-Expression Profile Changes Correlated with Tumor Progression and Lymph Node Metastasis in Esophageal Cancer , 2004, Clinical Cancer Research.

[4]  Pablo Moscato,et al.  Evolutionary Search of Thresholds for Robust Feature Set Selection: Application to the Analysis of Microarray Data , 2004, EvoWorkshops.

[5]  Asoke K. Nandi,et al.  Automatic digital modulation recognition using artificial neural network and genetic algorithm , 2004, Signal Process..

[6]  Samuel H. Huang Dimensionality Reduction in Automatic Knowledge Acquisition: A Simple Greedy Search Approach , 2003, IEEE Trans. Knowl. Data Eng..

[7]  Jihoon Yang,et al.  Prediction of Molecular Bioactivity for Drug Design Using a Decision Tree Algorithm , 2003, Discovery Science.

[8]  Luiz Eduardo Soares de Oliveira,et al.  A Methodology for Feature Selection Using Multiobjective Genetic Algorithms for Handwritten Digit String Recognition , 2003, Int. J. Pattern Recognit. Artif. Intell..

[9]  Ponnuthurai N. Suganthan,et al.  Feature Analysis and Classification of Protein Secondary Structure Data , 2003, ICANN.

[10]  Antonio José Heras Martínez,et al.  El Análisis Discriminante en la Previsión de la Insolvencia en las Empresas de Seguros de no Vida , 2003 .

[11]  Sofie Balcaen,et al.  Are failure prediction models transferable from one country to another? An empirical study using financial statements , 2002 .

[12]  A. Merino,et al.  Análisis Integrado de la Absorción y Quiebra Empresarial Mediante la Estimación de un Modelo Multilogit , 2002 .

[13]  Iñaki Inza,et al.  Gene selection by sequential search wrapper approaches in microarray cancer class prediction , 2002, J. Intell. Fuzzy Syst..

[14]  H. Ooghe,et al.  ARE FAILURE PREDICTION MODELS TRANSFERABLE FROM ONE COUNTRY TO ANOTHER ? AN EMPIRICAL STUDY USING BELGIAN FINANCIAL STATEMENTS , 2003 .

[15]  Pedro Larrañaga,et al.  Feature subset selection by genetic algorithms and estimation of distribution algorithms - A case study in the survival of cirrhotic patients treated with TIPS , 2001, Artif. Intell. Medicine.

[16]  E. Gassner,et al.  Automated melanoma recognition , 2001, IEEE Transactions on Medical Imaging.

[17]  L. Becchetti,et al.  Bankruptcy Risk and Productive Efficiency in Manufacturing Firms , 2003 .

[18]  Richard Nock,et al.  Contribution of Boosting in Wrapper Models , 1999, PKDD.

[19]  Clive S. Lennox,et al.  Identifying failing companies: a re-evaluation of the logit, probit and DA approaches , 1999 .

[20]  M. Resende,et al.  GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES (GRASP) , 1999 .

[21]  Franco Varetto Genetic algorithms applications in the analysis of insolvency risk , 1998 .

[22]  Hiroshi Motoda,et al.  Feature Selection for Knowledge Discovery and Data Mining , 1998, The Springer International Series in Engineering and Computer Science.

[23]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[24]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Jerzy W. Bala,et al.  Using Learning to Facilitate the Evolution of Features for Recognizing Visual Concepts , 1996, Evolutionary Computation.

[26]  Ron Kohavi,et al.  Wrappers for performance enhancement and oblivious decision graphs , 1995 .

[27]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[28]  Edward I. Altman,et al.  Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience) , 1994 .

[29]  John Mingers,et al.  Neural Networks, Decision Tree Induction and Discriminant Analysis: an Empirical Comparison , 1994 .

[30]  Joaquina Laffarga Briones,et al.  La predicción de la quiebra bancaria: el caso español , 1991 .

[31]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[32]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[33]  Giovanni Bortolan,et al.  The problem of linguistic approximation in clinical decision making , 1988, Int. J. Approx. Reason..

[34]  M. Zmijewski METHODOLOGICAL ISSUES RELATED TO THE ESTIMATION OF FINANCIAL DISTRESS PREDICTION MODELS , 1984 .

[35]  James A. Ohlson FINANCIAL RATIOS AND THE PROBABILISTIC PREDICTION OF BANKRUPTCY , 1980 .

[36]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[37]  J. A. Baranauskas,et al.  Experimental Feature Selection Using TheWrapper Approach , 1970 .

[38]  Edward I. Altman,et al.  FINANCIAL RATIOS, DISCRIMINANT ANALYSIS AND THE PREDICTION OF CORPORATE BANKRUPTCY , 1968 .

[39]  W. Beaver Financial Ratios As Predictors Of Failure , 1966 .

[40]  Philip M. Lewis,et al.  The characteristic selection problem in recognition systems , 1962, IRE Trans. Inf. Theory.

[41]  George S. Sebestyen,et al.  Decision-making processes in pattern recognition , 1962 .