Divergence Based Non-Negative Matrix Factorization for top-N Recommendations

Personalized top-N recommendation algorithms are among the most effective techniques providing customized suggestions in information retrieval applications. Most of the current methods construct personalized recommendations based on various loss functions such as pairwise ranking loss and point-wise recovery loss. In this paper, we propose a personalized top-N recommendation method based on non-negative matrix factorization with divergence as a point-wise ranking loss function. Our method finds the latent factors from the existing data to improve recommendation predictions. We formulate the learning problem with regularized divergence as a constrained non-convex minimization problem and develop a projected gradient descent optimization algorithm to solve the divergence problem. We evaluate our approach using six personal recommendation task related datasets by employing root mean squared error (RMSE) and hit rate (HR). Our experimental results demonstrate improved RMSE and HR for most of the datasets.

[1]  Michael J. Pazzani,et al.  Content-Based Recommendation Systems , 2007, The Adaptive Web.

[2]  Harald Steck,et al.  Training and testing of recommender systems on data missing not at random , 2010, KDD.

[3]  Lars Schmidt-Thieme,et al.  Taxonomy-driven computation of product recommendations , 2004, CIKM '04.

[4]  Jin Zhang,et al.  Preference Completion: Large-scale Collaborative Ranking from Pairwise Comparisons , 2015, ICML.

[5]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[6]  Xiangnan He,et al.  Attentive Collaborative Filtering: Multimedia Recommendation with Item- and Component-Level Attention , 2017, SIGIR.

[7]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[8]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[9]  M. Engin Tozal,et al.  Helpfulness Prediction of Online Product Reviews , 2018, DocEng.

[10]  James M. Joyce Kullback-Leibler Divergence , 2011, International Encyclopedia of Statistical Science.

[11]  Lior Rokach,et al.  Introduction to Recommender Systems Handbook , 2011, Recommender Systems Handbook.

[12]  F. Maxwell Harper,et al.  The MovieLens Datasets: History and Context , 2016, TIIS.

[13]  Ruslan Salakhutdinov,et al.  Probabilistic Matrix Factorization , 2007, NIPS.

[14]  Li Chen,et al.  CoFiSet: Collaborative Filtering via Learning Pairwise Preferences over Item-sets , 2013, SDM.

[15]  S. V. N. Vishwanathan,et al.  Ranking via Robust Binary Classification , 2014, NIPS.

[16]  Sebastian Krieter,et al.  A feature-based personalized recommender system for product-line configuration , 2016, GPCE.

[17]  Patrick Seemann,et al.  Matrix Factorization Techniques for Recommender Systems , 2014 .

[18]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[19]  Alexander J. Smola,et al.  Maximum Margin Matrix Factorization for Collaborative Ranking , 2007 .

[20]  Dan Frankowski,et al.  Collaborative Filtering Recommender Systems , 2007, The Adaptive Web.

[21]  Fabio Aiolli Convex AUC optimization for top-N recommendation with implicit feedback , 2014, RecSys '14.

[22]  George Karypis,et al.  A Comprehensive Survey of Neighborhood-based Recommendation Methods , 2011, Recommender Systems Handbook.

[23]  Zhao Kang,et al.  Top-N Recommender System via Matrix Completion , 2016, AAAI.

[24]  M. H. Abdi,et al.  Matrix Factorization Techniques for Context-Aware Collaborative Filtering Recommender Systems: A Survey , 2018, Comput. Inf. Sci..

[25]  Mohammed Ismail,et al.  Collaborative filtering-based recommendation of online social voting , 2018 .

[26]  Dennis M. Wilkinson,et al.  Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.

[27]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[28]  Hui Xiong,et al.  Learning geographical preferences for point-of-interest recommendation , 2013, KDD.

[29]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[30]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[31]  George Karypis,et al.  SLIM: Sparse Linear Methods for Top-N Recommender Systems , 2011, 2011 IEEE 11th International Conference on Data Mining.