Towards Stapling of Helical Alleno-Acetylene Oligomers - Synthesis of an Enantiopure Bis(ethynylvinylidene)-Substituted Cyclohexadeca-1,3,9,11-tetrayne

We are interested in developing strategies to bridge (“staple”) enantiomerically pure acyclic alleno-acetylenic oligomers to enhance their conformational preferences for helical secondary structures, which are postulated to be at the origin of their exceptional chiroptical properties. We found that ring-closing metathesis (RCM), which has been used for the stapling of peptide helices, failed with an acyclic alleno-acetylene dimer decorated with lateral olefinic side chains. Instead, enyne RCM to an enantiomerically pure dienyne occurred. We switched to the introduction of diacetylene-containing bridges and report here the 15-step synthesis of a moderately strained, enantiomerically pure cyclohexa-1,3,9,11-tetrayne with an oxidative acetylenic coupling in the key step. The chiroptical properties of the new compounds are discussed.

[1]  Y. Lim,et al.  Stabilization of α-helices by the self-assembly of macrocyclic peptides on the surface of gold nanoparticles for molecular recognition. , 2013, Chemical communications.

[2]  Alexander M. Spokoyny,et al.  A perfluoroaryl-cysteine S(N)Ar chemistry approach to unprotected peptide stapling. , 2013, Journal of the American Chemical Society.

[3]  Anders Wallqvist,et al.  Classification of scaffold-hopping approaches. , 2012, Drug discovery today.

[4]  M. Ikeguchi,et al.  A native disulfide stabilizes non-native helical structures in partially folded states of equine β-lactoglobulin. , 2011, Biochemistry.

[5]  F. Diederich,et al.  Cascade pericyclic reactions of alleno-acetylenes: facile access to highly substituted cyclobutene, dendralene, pentalene, and indene skeletons. , 2011, Chemistry.

[6]  R. Schrock,et al.  Synthesis of macrocyclic natural products by catalyst-controlled stereoselective ring-closing metathesis , 2011, Nature.

[7]  N. Berova,et al.  Conformational aspects in the studies of organic compounds by electronic circular dichroism. , 2011, Chemical Society reviews.

[8]  Daesung Lee,et al.  Enyne‐Metathesis‐Based Tandem Processes , 2011 .

[9]  R. Liskamp,et al.  Peptides and Proteins as a Continuing Exciting Source of Inspiration for Peptidomimetics , 2011, Chembiochem : a European journal of chemical biology.

[10]  G. Verdine,et al.  Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis , 2011, Nature Protocols.

[11]  Shichao Yu,et al.  How easy are the syntheses of allenes? , 2011, Chemical communications.

[12]  F. Diederich,et al.  Enantiopure, monodisperse alleno-acetylenic cyclooligomers: effect of symmetry and conformational flexibility on the chiroptical properties of carbon-rich compounds. , 2011, Chemistry.

[13]  C. Bruneau,et al.  Ene–yne cross-metathesis with ruthenium carbene catalysts , 2011, Beilstein journal of organic chemistry.

[14]  Q. Gao,et al.  Effect of Substituted Groups on the Electronic Circular Dichroism of Aldols: A Combined Experimental and Time-Dependent DFT Study† , 2011 .

[15]  Ana G. Petrovic,et al.  Enantiomerically pure alleno-acetylenic macrocycles: synthesis, solid-state structures, chiroptical properties, and electron localization function analysis. , 2010, Chemistry.

[16]  Hee-Seung Lee,et al.  Quantitative catalyst-substrate association relationships between metathesis molybdenum or ruthenium carbene complexes and their substrates. , 2010, Journal of the American Chemical Society.

[17]  Daesung Lee,et al.  Initiation and termination mode of enyne cross-metathesis and metallotropic [1,3]-shift controlled by remote substituents. , 2010, Journal of the American Chemical Society.

[18]  Peter S. Kutchukian,et al.  Introduction of all-hydrocarbon i,i+3 staples into alpha-helices via ring-closing olefin metathesis. , 2010, Organic letters.

[19]  Pablo Rivera-Fuentes,et al.  Amplifikation der Chiralität in monodispersen, enantiomerenreinen Allen‐Acetylen‐Oligomeren , 2010 .

[20]  N. Iguchi,et al.  Olefin metathesis in carotenoid synthesis. , 2009, Organic & biomolecular chemistry.

[21]  Jordan M Fletcher,et al.  Synthesis of stapled beta3-peptides through ring-closing metathesis. , 2009, Organic letters.

[22]  Pablo Rivera-Fuentes,et al.  Ein enantiomerenreiner alleno‐acetylenischer Makrocyclus: Synthese und Interpretation seiner herausragenden chiroptischen Eigenschaften , 2009 .

[23]  S. Stachel Progress toward the development of a viable BACE‐1 inhibitor , 2009 .

[24]  P. J. Lusby,et al.  Getting harder: cobalt(III)-template synthesis of catenanes and rotaxanes. , 2009, Journal of the American Chemical Society.

[25]  D. Wink,et al.  Structure and reactivity of alkynyl ruthenium alkylidenes. , 2009, Journal of the American Chemical Society.

[26]  F. Diederich,et al.  1,3-Diethynylallenes (DEAs): enantioselective synthesis, absolute configuration, and chiral induction in 1,1,4,4-tetracyanobuta-1,3-dienes (TCBDs). , 2008, Chemistry.

[27]  B. W. Gung,et al.  The first transannular [4+3] cycloaddition reaction: synthesis of the ABCD ring structure of cortistatins. , 2008, Tetrahedron letters.

[28]  A. Brik Metathesis in Peptides and Peptidomimetics , 2008 .

[29]  V. Hruby,et al.  Peptidomimetics, a synthetic tool of drug discovery. , 2008, Current opinion in chemical biology.

[30]  J. Garner,et al.  Design and synthesis of α-helical peptides and mimetics , 2007 .

[31]  K. Mayo,et al.  A journey in structure-based drug discovery: from designed peptides to protein surface topomimetics as antibiotic and antiangiogenic agents. , 2007, Accounts of chemical research.

[32]  M. Kwit,et al.  Absolute configuration of conformationally flexible cis-dihydrodiol metabolites by the method of confrontation of experimental and calculated electronic CD spectra and optical rotations. , 2007, Chemistry.

[33]  F. Diederich,et al.  1,3-diethynylallenes : Stable monomers, length-defined oligomers, asymmetric synthesis, and optical resolution , 2007 .

[34]  N. Berova,et al.  Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. , 2007, Chemical Society reviews.

[35]  R. Grubbs,et al.  Highly efficient ruthenium catalysts for the formation of tetrasubstituted olefins via ring-closing metathesis. , 2007, Organic letters.

[36]  M. Mori,et al.  Synthesis of natural products and related compounds using enyne metathesis , 2007 .

[37]  C. Bolm,et al.  Ring closing enyne metathesis: a powerful tool for the synthesis of heterocycles. , 2007, Chemical Society reviews.

[38]  Ana Gradillas,et al.  Makrocyclisierung durch Ringschlussmetathese bei der Totalsynthese von Naturstoffen: Reaktionsbedingungen und Grenzen , 2006 .

[39]  E. Hansen,et al.  Search for solutions to the reactivity and selectivity problems in enyne metathesis. , 2006, Accounts of chemical research.

[40]  C. Mukai,et al.  Grubbs catalyst-mediated cycloisomerization of allenenes , 2006 .

[41]  Daesung Lee,et al.  Metathesis and metallotropy: a versatile combination for the synthesis of oligoenynes. , 2005, Journal of the American Chemical Society.

[42]  Daesung Lee,et al.  Cross and ring-closing metathesis of 1,3-diynes: metallotropic [1,3]-shift of ruthenium carbenes. , 2005, Journal of the American Chemical Society.

[43]  M. Murakami,et al.  Molybdenum-catalyzed ring-closing metathesis of allenynes. , 2005, Organic letters.

[44]  K. Nicolaou,et al.  Metathesereaktionen in der Totalsynthese , 2005 .

[45]  N. Krause,et al.  Studies on the synthesis of macrocyclic allenes by ring closing metathesis and Doering-Moore-Skattebøl reaction , 2005 .

[46]  P. Nielsen Pseudo-Peptides in Drug Development: Nielsen: Pseudo-Peptides O-BK , 2005 .

[47]  S. Korsmeyer,et al.  Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix , 2004, Science.

[48]  S. Diver,et al.  Enyne metathesis (enyne bond reorganization). , 2004, Chemical reviews.

[49]  W. V. Otterlo,et al.  Synthesis of dienynes from alkenes and diynes using ruthenium-mediated ring-closing metathesis , 2004 .

[50]  S. Blechert,et al.  Jüngste Entwicklungen bei der gekreuzten Olefinmetathese , 2003 .

[51]  F. Diederich,et al.  1,3-Diethynylallenes: Carbon-Rich Modules for Three-Dimensional Acetylenic Scaffolding , 2002 .

[52]  A. Vasella,et al.  Oligosaccharide Analogues of Polysaccharides Part 23. Synthesis of a Dimeric Acetyleno Cyclodextrin from a Mannopyranose-Derived Dialkyne , 2001 .

[53]  H. Schoemaker,et al.  Enamide-olefin ring-closing metathesis. , 2001, Organic letters.

[54]  R. Grubbs,et al.  Ring-closing metathesis of olefinic peptides: design, synthesis, and structural characterization of macrocyclic helical peptides. , 2001, The Journal of organic chemistry.

[55]  R. Grubbs,et al.  The development of L2X2Ru=CHR olefin metathesis catalysts: an organometallic success story. , 2001, Accounts of chemical research.

[56]  V. Marzo,et al.  The Synthesis of N-Vanillyl-arachidonoyl-amide (Arvanil) and its Analogs: An Improved Procedure for the Synthesis of the Key Synthon Methyl 14-Hydroxy-(all-cis)-5,8,11-tetradecatrienoate , 2000 .

[57]  Alois Fürstner Olefinmetathese und mehr , 2000 .

[58]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[59]  Ahmed,et al.  Allene cross-metathesis: synthesis of 1,3-disubstituted allenes , 2000, Organic letters.

[60]  R. Gleiter,et al.  MOLECULAR STRUCTURES OF CYCLOTETRADECA-1,3,8,10-TETRAYNE AND CYCLOHEXADECA-1,3,9,11-TETRAYNE , 1999 .

[61]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[62]  J. P. Harrity,et al.  A Recyclable Ru-Based Metathesis Catalyst , 1999 .

[63]  R. H. Grubbs,et al.  Die Ringschluß‐Olefin‐Metathese als hocheffiziente Methode zur Synthese kovalent querverbrückter Peptide , 1998 .

[64]  A. Fürstner,et al.  Macrocycles by Ring-Closing Metathesis , 1997 .

[65]  G. Rapenne,et al.  Efficient synthesis of a molecular knot by copper(I)-induced formation of the precursor followed by ruthenium(II)-catalysed ring closing metathesis , 1997 .

[66]  Scott J. Miller,et al.  Application of Ring-Closing Metathesis to the Synthesis of Rigidified Amino Acids and Peptides , 1996 .

[67]  J. Ziller,et al.  Synthesis and Applications of RuCl2(CHR‘)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity , 1996 .

[68]  W. DeGrado,et al.  Protein Design: A Hierarchic Approach , 1995, Science.

[69]  J. W. Ziller,et al.  Eine Reihe definierter Metathesekatalysatoren – Synthese von und Reaktionen mit [RuCl2 ( CHR′)(PR3)2] , 1995 .

[70]  M. Ghadiri,et al.  Secondary structure nucleation in peptides. Transition metal ion stabilized .alpha.-helices , 1990 .

[71]  R. Rossi,et al.  A palladium-promoted route to 3-alkyl-4-(1-alkynyl)hexa-1,5-dyn-3-enes and/or 1,3-diynes , 1985 .

[72]  T. Pham,et al.  Occurrence of electron transfer in the reduction of organic halides by lithium aluminum hydride and aluminum hydride , 1984 .

[73]  E. C. Ashby,et al.  Occurrence of electron transfer in the reduction of organic halides by LiAlH3 and AlH3 , 1984 .

[74]  K. Nakanishi,et al.  Circular dichroic spectroscopy : exciton coupling in organic stereochemistry , 1983 .

[75]  G. Snatzke Circulardichroismus und absolute Konformation: Anwendung der qualitativen MO‐Theorie auf die chiroptischen Phänomene , 1979 .

[76]  D. Y. Cha,et al.  An improved catalytic OsO4 oxidation of olefins to cis-1,2-glycols using tertiary amine oxides as the oxidant , 1976 .

[77]  N. Sakabe,et al.  The crystal and molecular structure of [3,3]paracyclophadiyne , 1975 .

[78]  T. Otsubo,et al.  Layered Compounds. V. Synthesis and Properties of [m.n]Paracyclophadiynes , 1972 .

[79]  E. Corey,et al.  Virtual long-range spin-spin couplings in NMR , 1962 .

[80]  F. Sondheimer,et al.  Unsaturated Macrocyclic Compounds. IV. The Oxidation of Terminal Diacetylenes to Macrocyclic Tetraacetylenes , 1957 .

[81]  Werner Kuhn,et al.  The physical significance of optical rotatory power , 2022 .