Group velocity and dispersion model of coupled-cavity waveguides in photonic crystals.

A theoretical model of the group velocity, dispersion parameter, and dispersion slope of coupled-cavity waveguides in photonic crystals is reported. Results arising from closed-form expressions show a good agreement with simulation results obtained by employing a plane-wave expansion method. Coupled-cavity waveguides present interesting dispersion properties that may be employed in applications such as optical signal processing, dispersion compensation, and optical delay lines.