Nanoscale stabilization of sodium oxides: implications for Na-O2 batteries.

The thermodynamic stability of materials can depend on particle size due to the competition between surface and bulk energy. In this Letter, we show that, while sodium peroxide (Na2O2) is the stable bulk phase of Na in an oxygen environment at standard conditions, sodium superoxide (NaO2) is considerably more stable at the nanoscale. As a consequence, the superoxide requires a much lower nucleation energy than the peroxide, explaining why it can be observed as the discharge product in some Na-O2 batteries. As the superoxide can be recharged (decomposed) at much lower overpotentials than the peroxide, these findings are important to create highly reversible Na-O2 batteries. We derive the specific electrochemical conditions to nucleate and retain Na-superoxides and comment on the importance of considering the nanophase thermodynamics when optimizing an electrochemical system.

[1]  Haoshen Zhou,et al.  High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode , 2014 .

[2]  Xueliang Sun,et al.  Superior catalytic activity of nitrogen-doped graphene cathodes for high energy capacity sodium-air batteries. , 2013, Chemical communications.

[3]  Shyue Ping Ong,et al.  A Facile Mechanism for Recharging Li2O2 in Li–O2 Batteries , 2013 .

[4]  Philipp Adelhelm,et al.  A comprehensive study on the cell chemistry of the sodium superoxide (NaO2) battery. , 2013, Physical chemistry chemical physics : PCCP.

[5]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[6]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[7]  Hee-Dae Lim,et al.  Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes. , 2013, Physical chemistry chemical physics : PCCP.

[8]  Qian Sun,et al.  An enhanced electrochemical performance of a sodium-air battery with graphene nanosheets as air electrode catalysts. , 2013, Chemical communications.

[9]  Lynden A. Archer,et al.  Carbon dioxide assist for non-aqueous sodium-oxygen batteries , 2013 .

[10]  J. Nørskov,et al.  Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. , 2013, The Journal of chemical physics.

[11]  Qian Sun,et al.  Electrochemical properties of room temperature sodium-air batteries with non-aqueous electrolyte , 2012 .

[12]  Donald J. Siegel,et al.  Lithium peroxide surfaces are metallic, while lithium oxide surfaces are not. , 2012, Journal of the American Chemical Society.

[13]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[14]  Jasim Uddin,et al.  Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2(•-)). , 2011, The journal of physical chemistry. A.

[15]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[16]  A. Navrotsky Nanoscale effects on thermodynamics and phase equilibria in oxide systems. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  Diana Golodnitsky,et al.  Parameter analysis of a practical lithium- and sodium-air electric vehicle battery , 2011 .

[18]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[19]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[20]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[21]  A. Navrotsky,et al.  Size-Driven Structural and Thermodynamic Complexity in Iron Oxides , 2008, Science.

[22]  K. Vervaeke,et al.  Modulation of superconductivity by a magnetic template in Nb/BaFe12O19 hybrids , 2006 .

[23]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[24]  M. Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001, cond-mat/0107229.

[25]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[26]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[27]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[28]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[29]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[30]  H. Wriedt The Na−O (Sodium-Oxygen) System , 1987 .

[31]  D. H. Templeton,et al.  POLYMORPHISM OF SODIUM SUPEROXIDE , 1953 .

[32]  D. H. Templeton,et al.  The Crystal Structure of Sodium Superoxide1 , 1950 .

[33]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[34]  Jasim Ahmed,et al.  A Critical Review of Li/Air Batteries , 2011 .

[35]  Tanabe Shinichi,et al.  SiC(0001)上のグラフェンのキャリア輸送メカニズム , 2011 .

[36]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[37]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[38]  H. Baker,et al.  Alloy phase diagrams , 1992 .

[39]  J. Hafner Alloy Phase Diagrams , 1987 .