Effects of Temperature and Polyethylene Plastic Packaging on Physicochemical Changes and Antioxidant Properties of Tomato During Storage

This study determined the effects of different storage temperatures and packaging on the physicochemical changes and antioxidant properties of tomatoes during storage in two tomato species (Lycopersicon esculentum Mill. tomato and Solanum lycopersicum var. Cerasiforme cherry tomato). Samples underwent storage process with different temperatures of 4 °C and room temperature (25 °C); with or without polyethylene plastic packaging. The physicochemical changes studied include weight, color, firmness, and total soluble solids (TSS), while the antioxidant properties studied include lycopene content, ascorbic acid content, total phenolic content (TPC), and free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl, DPPH), measured at three-time points (day 1, 8, 15). Based on the two-way ANOVA, both temperature and packaging factors play an important role in the physicochemical changes and antioxidant properties of both tomato species. For tomatoes, the temperature had a significant (p<0.05) effect on all measurements, except for redness value (a*) and ascorbic acid content (p>0.05). While packaging had a significant (p<0.05) effect on all measurements, excluding the ascorbic acid and TPC (p>0.05). For cherry tomatoes, the temperature had a significant (p<0.05) effect on all measurements, not including ascorbic acid content (p>0.05). Whereas packaging had a significant (p<0.05) effect on all measurements, except for TPC (p>0.05). For both samples studied, temperature and packaging factors had significant interactions (p<0.05) on all measurements, except for ascorbic acid and TPC (p>0.05). In conclusion, storage at a low temperature of 4 °C with the packaging was found to be able to maintain the physicochemical and antioxidant properties in both tomato species.

[1]  P. Pathare,et al.  Effect of Postharvest Transport and Storage on Color and Firmness Quality of Tomato , 2021, Horticulturae.

[2]  C. Pita-Calvo,et al.  Evaluation of a modified atmosphere packaging system in pallets to extend the shelf-life of the stored tomato at cooling temperature. , 2021, Food chemistry.

[3]  Pankaj B. Pathare,et al.  Bruise Damage and Quality Changes in Impact-Bruised, Stored Tomatoes , 2021, Horticulturae.

[4]  N. Firdous Post-harvest losses in different fresh produces and vegetables in Pakistan with particular focus on tomatoes , 2021 .

[5]  Pankaj B. Pathare,et al.  Effect of Storage Conditions on Postharvest Quality of Tomatoes: A Case Study at Market-Level , 2021 .

[6]  K. F. Mendes,et al.  Evaluation of physicochemical characteristics in cherry tomatoes irradiated with 60Co gamma-rays on post-harvest conservation , 2020 .

[7]  C. Leonardi,et al.  Effects of Genotype, Storage Temperature and Time on Quality and Compositional Traits of Cherry Tomato , 2020, Foods.

[8]  Xihong Li,et al.  Constant temperature during postharvest storage delays fruit ripening and enhances the antioxidant capacity of mature green tomato , 2020 .

[9]  A. Farooq,et al.  Effect of storage conditions and packaging material on postharvest quality attributes of strawberry , 2020 .

[10]  Umezuruike Linus Opara,et al.  Advances in design and performance evaluation of fresh fruit ventilated distribution packaging: A review , 2020, Food Packaging and Shelf Life.

[11]  Sonia Osorio,et al.  Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits , 2020, Metabolites.

[12]  H. Feizi,et al.  Impact of Different Packaging Schemes and Transport Temperature on Post-Harvest Losses and Quality of Tomato (Solanum lycopersicum L.) , 2020 .

[13]  Nitin Kumar,et al.  Shelf life prolongation of cherry tomato using magnesium hydroxide reinforced bio‐nanocomposite and conventional plastic films , 2020 .

[14]  A. Asgar Effect of storage temperature and type of packaging on physical and chemical quality of carrot , 2020, IOP Conference Series: Earth and Environmental Science.

[15]  E. Paulsen,et al.  Ready-to-eat cherry tomatoes: Passive modified atmosphere packaging conditions for shelf life extension , 2019 .

[16]  N. Chin,et al.  Combination of ultrasound and ultraviolet‐C irradiation on kinetics of color, firmness, weight loss, and total phenolic content changes in tomatoes during storage , 2019, Journal of Food Processing and Preservation.

[17]  D. T. Gungula,et al.  Effect of chemical dips and packaging materials on quality and shelf life of tomatoes (Lycopersicon esculentum) in Kura, Nigeria , 2019 .

[18]  Lembe S. Magwaza,et al.  Postharvest quality and bioactive properties of tomatoes (Solanum lycopersicum) stored in a low-cost and energy-free evaporative cooling system , 2019, Heliyon.

[19]  V. Antolinos,et al.  Effects of an Active Cardboard Box Using Encapsulated Essential Oils on the Tomato Shelf Life , 2019, Food and Bioprocess Technology.

[20]  A. Rehman,et al.  Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress , 2019, Molecules.

[21]  L. Helyes,et al.  Physiological Factors and their Relationship with the Productivity of Processing Tomato under Different Water Supplies , 2019, Water.

[22]  C. Patané,et al.  Nutritional changes during storage in fresh-cut long storage tomato as affected by biocompostable polylactide and cellulose based packaging , 2019, LWT.

[23]  Sun-Ok Chung,et al.  Changes in quality parameters of tomatoes during storage: a review , 2019, Korean Journal of Agricultural Science.

[24]  A. Itodo,et al.  A Review on Postharvest Storage, Processing and Preservation of Tomatoes (Lycopersicon esculentum Mill) , 2018, Asian Food Science Journal.

[25]  C. Scarlett,et al.  Effect of Biocomposite Edible Coatings Based on Pea Starch and Guar Gum on Nutritional Quality of “Valencia” Orange During Storage , 2018 .

[26]  Tura Safawo,et al.  Shelf life and quality of tomato (Lycopersicon esculentum Mill.) fruits as affected by different Packaging Materials , 2018 .

[27]  Janos C. Keresztes,et al.  Measuring colour of vine tomatoes using hyperspectral imaging , 2017 .

[28]  A. Mohammed,et al.  Effects of edible coating materials and stages of maturity at harvest on storage life and quality of tomato (Lycopersicon Esculentum Mill.) fruits , 2017 .

[29]  D. Park,et al.  Effects of Storage Duration on Physicochemical and Antioxidant Properties of Tomato (Lycopersicon esculentum Mill.) , 2017 .

[30]  T. Suwanaruang Analyzing Lycopene Content in Fruits , 2016 .

[31]  G. B. Martínez-Hernández,et al.  Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content , 2016, Food Engineering Reviews.

[32]  S. Schwartz,et al.  Thermal Stability and Isomerization of Lycopene in Tomato Oleoresins from Different Varieties , 2006 .

[33]  G. Mazza,et al.  Functional foods: biochemical and processing aspects. , 1998 .