Optical soliton solutions for the variable coefficient modified Kawahara equation

Abstract In this paper, we obtain the 1-soliton solutions of the variable-coefficient modified Kawahara equation (VCMKE). The dark optical as well as bright optical soliton solutions were found related to the model considered in this study. The solitary wave ansatz method is used to carry out the integration.

[1]  Nasir Taghizadeh,et al.  The first integral method to some complex nonlinear partial differential equations , 2011, J. Comput. Appl. Math..

[2]  Abdul-Majid Wazwaz,et al.  The extended tanh method for abundant solitary wave solutions of nonlinear wave equations , 2007, Appl. Math. Comput..

[3]  Anjan Biswas,et al.  Solitary wave solution for the generalized Kawahara equation , 2009, Appl. Math. Lett..

[4]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[5]  Nikolay A. Kudryashov,et al.  From Laurent series to exact meromorphic solutions: The Kawahara equation , 2010, 1112.5266.

[6]  M. A. Abdou The extended F-expansion method and its application for a class of nonlinear evolution equations , 2007 .

[7]  Abdul-Majid Wazwaz,et al.  A sine-cosine method for handlingnonlinear wave equations , 2004, Math. Comput. Model..

[8]  A. Wazwaz,et al.  Bright solitons and multiple soliton solutions for coupled modified KdV equations with time-dependent coefficients , 2010 .

[9]  Mikhail Kostylev,et al.  Excitation of bright and dark envelope solitons for magnetostatic waves with attractive nonlinearity , 2005 .

[10]  M. S. Ismail,et al.  Soliton solutions of a BBM(m, n) equation with generalized evolution , 2010, Appl. Math. Comput..

[11]  A. Wazwaz,et al.  Bright solitons of the variants of the Novikov–Veselov equation with constant and variable coefficients , 2013 .

[12]  Anjan Biswas,et al.  1-soliton solution of the K(m,n) equation with generalized evolution , 2008 .

[13]  Y. Gurefe,et al.  Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics , 2011 .

[14]  Zhaosheng Feng,et al.  The first-integral method to study the Burgers–Korteweg–de Vries equation , 2002 .

[15]  Mingliang Wang,et al.  The (G' G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics , 2008 .

[16]  Abdul-Majid Wazwaz,et al.  Soliton solutions for (2 + 1)-dimensional and (3 + 1)-dimensional K(m, n) equations , 2010, Appl. Math. Comput..

[17]  Abdul-Majid Wazwaz,et al.  BRIGHT AND DARK SOLITON SOLUTIONS FOR A K (M, N) EQUATION WITH T-DEPENDENT COEFFICIENTS , 2009 .

[18]  Abdul-Majid Wazwaz,et al.  A one-soliton solution of the ZK(m,n,k) equation with generalized evolution and time-dependent coefficients , 2011 .

[19]  Jinliang Zhang,et al.  The improved F -expansion method and its applications , 2006 .

[20]  A. Biswas,et al.  Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity , 2011 .

[21]  Abdul-Majid Wazwaz,et al.  Dark solitons for a combined potential KdV and Schwarzian KdV equations with t-dependent coefficients and forcing term , 2011, Appl. Math. Comput..

[22]  Massimiliano Esposito,et al.  Emergence of diffusion in finite quantum systems , 2005 .

[23]  Liu Cheng-Shi,et al.  Trial equation method and its applications to nonlinear evolution equations , 2005 .

[24]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[25]  Lakhveer Kaur,et al.  Kawahara equation and modified Kawahara equation with time dependent coefficients: symmetry analysis and generalized ‐expansion method , 2013 .

[26]  A. Bekir New solitons and periodic wave solutions for some nonlinear physical models by using the sine–cosine method , 2008 .

[27]  M. A. Abdou,et al.  New exact travelling wave solutions using modified extended tanh-function method , 2007 .

[28]  Abdul-Majid Wazwaz,et al.  The tanh method for traveling wave solutions of nonlinear equations , 2004, Appl. Math. Comput..

[29]  Anjan Biswas,et al.  Topological and non-topological solitons of the generalized Klein-Gordon equations , 2009, Appl. Math. Comput..

[30]  A. Esfahani On the generalized Kadomtsev–Petviashvili equation with generalized evolution and variable coefficients , 2010 .

[31]  Abdul-Majid Wazwaz,et al.  Soliton solutions for a generalized KdV and BBM equations with time-dependent coefficients , 2011 .

[32]  E. Fan,et al.  A note on the homogeneous balance method , 1998 .

[33]  A. Biswas 1-Soliton solution of the generalized Zakharov–Kuznetsov equation with nonlinear dispersion and time-dependent coefficients , 2009 .

[34]  Ahmet Bekir Application of the (G′G)-expansion method for nonlinear evolution equations , 2008 .

[35]  Anjan Biswas,et al.  Dark optical solitons in power law media with time-dependent coefficients , 2009 .